cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275027 a(n) = Sum_{k=0..n} C(n,k)^2*C(n-k,k), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

1, 1, 5, 19, 85, 401, 1931, 9605, 48469, 248365, 1286605, 6726875, 35441275, 187935775, 1002122525, 5369287019, 28889315669, 156015203845, 845330354321, 4593724615175, 25029614166685, 136704935601785, 748273234994675, 4103928115592365, 22549175326327675, 124105065258631651, 684100888645922051, 3776354280849020005
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 12 2016

Keywords

Comments

Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
The author has proved that for any prime p > 5 and positive integer n the number (a(p*n)-a(n))/(p^3*n^2) is always a p-adic integer.
As a(n) = Sum_{k=0..n} C(n,k)*C(n,2k)*C(2k,k) and C(2k,k) = 2*C(2k-1,k-1) for k = 1,2,3,..., we see that a(n) is always odd. We guess that a(n) is congruent to one of 0, 1, -1 modulo 5.
Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - x^2*y*z). - Ilya Gutkovskiy, Apr 23 2025

Examples

			a(2) = 5 since a(2) = Sum_{k=0,1,2}C(2,k)^2*C(2-k,k) = C(2,0)^2*C(2,0) + C(2,1)^2*C(1,1) = 1 + 4 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[Binomial[n,k]^2*Binomial[n-k,k],{k,0,n/2}]
    Table[a[n],{n,0,27}]
    a[n_] := HypergeometricPFQ[{-n, 1/2 - n/2, -n/2}, {1, 1}, -4];
    Table[a[n], {n, 0, 27}] (* Peter Luschny, Mar 21 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*binomial(n-k,k)); \\ Michel Marcus, Nov 13 2016

Formula

a(n) = Sum_{k=0..n}C(n,k)*C(n,2k)*C(2k,k).
By the Zeilberger algorithm, we have the recurrence (n+3)^2*(23n+25)*a(n+3) = 25*(n+1)^2*(23n+48)*a(n) + (391n^3+1989n^2+3288n+1750)*a(n+1) + (46n^3+280n^2+ 519n+265)*a(n+2) for all n >= 0.
a(n) = hypergeom([-n, 1/2 - n/2, -n/2], [1, 1], -4). - Peter Luschny, Mar 21 2018
a(n) ~ c * d^n / (Pi*n), where d = 5.729031537980930837932235459792820714... is the real root of the equation -25 - 17*d - 2*d^2 + d^3 = 0 and c = 1.107089291883984657933126801836156175486638498732... is the positive real root of the equation -125 + 1048*c^2 - 2576*c^4 + 1472*c^6 = 0. - Vaclav Kotesovec, Jun 09 2019
G.f.: hypergeom([1/12, 5/12],[1],-1728*(25*x^3+17*x^2+2*x-1)*x^7/(1-4*x-10*x^2+4*x^3+25*x^4)^3)/(1-4*x-10*x^2+4*x^3+25*x^4)^(1/4). - Mark van Hoeij, Nov 28 2024