A275029 Partition numbers (A000041) congruent to 2 (mod 4).
2, 22, 30, 42, 490, 1002, 1958, 3010, 3718, 6842, 12310, 37338, 53174, 89134, 105558, 124754, 204226, 614154, 1741630, 2012558, 13848650, 34262962, 133230930, 214481126, 271248950, 607163746, 4835271870, 30388671978, 45060624582, 88751778802, 107438159466
Offset: 1
Keywords
Examples
30 is in the sequence because it is a partition number, and its divisors are [1,2,3,5,6,10,15,30].
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Programs
-
Maple
select(t -> t mod 4 = 2, map(combinat:-numbpart, [$1..500])); # Robert Israel, Nov 14 2016
-
Mathematica
Select[PartitionsP@ Range@ 160, Mod[#, 4] == 2 &] (* Michael De Vlieger, Nov 15 2016 *)
-
PARI
a000041(n) = numbpart(n) terms(n) = my(i=0, k=2); while(1, if(Mod(a000041(k), 4)==2, print1(a000041(k), ", "); i++); if(i==n, break); k++) /* Print initial 50 terms as follows */ terms(50) \\ Felix Fröhlich, Nov 15 2016
Comments