cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275051 Expansion of 3F2([1/9, 4/9, 5/9], [1/3,1], 729*x).

Original entry on oeis.org

1, 60, 20475, 9373650, 4881796920, 2734407111744, 1605040007778900, 973419698810097000, 604759111060745718000, 382741738086972337402560, 245810413547242455520545552, 159759730493918131135425965280, 104861901534978616465850670348000
Offset: 0

Views

Author

Gheorghe Coserea, Jul 19 2016

Keywords

Comments

"One may consider the following conjecture: all the irreducible factors of the minimal order linear differential operator annihilating a diagonal of a rational function should be homomorphic to their adjoint (possibly on an algebraic extension). [...]
"If our conjecture above was correct, this would be a way to show that the series cannot be the diagonal of a rational function." (See Boukraa link.)

Examples

			1 + 60*x + 20475*x^2 + 9373650*x^3 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/9, 4/9, 5/9}, {1/3,1}, 729*x], {x, 0, 15}], x] (* Vaclav Kotesovec, Jul 28 2016 *)
    a[n_] := FullSimplify[(729^n Cos[Pi/18] Gamma[1/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[5/9 + n])/(Pi Gamma[1/9] Gamma[1/3 + n] n!^2)] (* Benedict W. J. Irwin, Aug 05 2016 *)
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 21; x = 'x + O('x^N);
    Vec(hypergeom_sym([1/9, 4/9, 5/9], [1/3,1], 729*x, N))
    
  • PARI
    my(x = 'x + O('x^20)); Vec(hypergeom([1/9, 4/9, 5/9], [1/3,1], 729*x)) \\ Michel Marcus, Apr 11 2023

Formula

G.f.: hypergeom([1/9, 4/9, 5/9], [1/3,1], 729*x).
From Vaclav Kotesovec, Jul 28 2016: (Start)
Recurrence: n^2*(3*n - 2)*a(n) = 3*(9*n - 8)*(9*n - 5)*(9*n - 4)*a(n-1).
a(n) ~ Gamma(1/3) * cos(Pi/18) * 3^(6*n) / (Pi * Gamma(1/9) * n^(11/9)).
(End)
a(n) = 729^n*cos(Pi/18)*Gamma(1/3)*Gamma(1/9+n)*Gamma(4/9+n)*Gamma(5/9+n) /(Pi*Gamma(1/9)*Gamma(1/3+n)*n!^2). - Benedict W. J. Irwin, Aug 05 2016
From Karol A. Penson, Apr 11 2023: (Start)
a(n) = Integral_{x=0..729} x^n*W(x), where
W(x) = W1(x) + W2(x) + W3(x), and
W1(x) = (2*cos(Pi/18)*3^(1/3)*2^(4/9)*sqrt(Pi)*Gamma(13/18)*hypergeom([1/9, 1/9, 7/9], [5/9, 2/3], x/729))/(9*Gamma(2/3)^2*Gamma(1/9)*Gamma(8/9)^2*x^(8/9));
W2(x) = cos(Pi/18)*2^(1/9)*Gamma(2/9)*Gamma(1/18)*hypergeom([4/9, 4/9, 10/9], [8/9, 4/3], x/729)/(162*Gamma(2/3)*Gamma(1/9)*Pi^(3/2)*x^(5/9));
W3(x) = cos(Pi/18)*3^(1/6)*2^(4/9)*Gamma(5/18)*Gamma(-1/18)*hypergeom([5/9, 5/9, 11/9], [10/9, 13/9], x/729)/(324*Gamma(2/3)*Gamma(1/9)*Pi*Gamma(4/9)*x^(4/9)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-4/9), and for x > 0 is monotonically decreasing to zero at x = 729. At x = 729 the first derivative of W(x) is infinite. (End)