cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275099 Number of set partitions of [10*n] such that within each block the numbers of elements from all residue classes modulo 10 are equal.

Original entry on oeis.org

1, 1, 513, 10136746, 2672797504001, 5260857687009765626, 53531132944198868710856802, 2185249026716732313958375321948613, 297263694975439941710846391262298377605633, 116941828532092016226313310933885429108622288425362
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2016

Keywords

Crossrefs

Column k=10 of A275043.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n, j)^10*(n-j)*a(j), j=0..n-1)/n)
        end:
    seq(a(n), n=0..12);
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, j]^10*(n-j)*a[j], {j, 0, n-1}]/n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)

Formula

Sum_{n>=0} a(n) * x^n / (n!)^10 = exp(Sum_{n>=1} x^n / (n!)^10). - Ilya Gutkovskiy, Jul 17 2020