A275099 Number of set partitions of [10*n] such that within each block the numbers of elements from all residue classes modulo 10 are equal.
1, 1, 513, 10136746, 2672797504001, 5260857687009765626, 53531132944198868710856802, 2185249026716732313958375321948613, 297263694975439941710846391262298377605633, 116941828532092016226313310933885429108622288425362
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..75
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
Crossrefs
Column k=10 of A275043.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n, j)^10*(n-j)*a(j), j=0..n-1)/n) end: seq(a(n), n=0..12);
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, j]^10*(n-j)*a[j], {j, 0, n-1}]/n]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)
Formula
Sum_{n>=0} a(n) * x^n / (n!)^10 = exp(Sum_{n>=1} x^n / (n!)^10). - Ilya Gutkovskiy, Jul 17 2020