A275101 Number of set partitions of [4*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
1, 15, 131, 1613, 25097, 461105, 9483041, 209175233, 4802367617, 112660505345, 2672797504001, 63775070743553, 1526140298561537, 36573850636201985, 877130337148149761, 21043423870122115073, 504949726500343545857, 12117684104978986369025
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..725
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
- Index entries for linear recurrences with constant coefficients, signature (47,-718,4416,-10656,6912).
Crossrefs
Row n=4 of A275043.
Programs
-
Mathematica
LinearRecurrence[{47,-718,4416,-10656,6912},{1,15,131,1613,25097,461105},20] (* Harvey P. Dale, Apr 30 2022 *)
Formula
G.f.: -(14112*x^5-12240*x^4+1810*x^3+144*x^2-32*x+1) / ((x-1) *(6*x-1) *(24*x-1) *(12*x-1) *(4*x-1)).