cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275111 a(n) = prime(n)! mod prime(n+1).

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 4, 22, 1, 33, 7, 1, 8, 19, 30, 1, 43, 12, 1, 27, 14, 23, 24, 17, 1, 18, 1, 19, 19, 22, 8, 1, 94, 1, 140, 72, 28, 62, 91, 1, 105, 1, 33, 1, 177, 97, 38, 1, 39, 2, 1, 19, 15, 160, 204, 1, 247, 47, 1, 291, 299, 52, 1, 53, 198, 132, 55, 1, 59, 3, 176
Offset: 1

Views

Author

Thomas Ordowski, Jul 17 2016

Keywords

Comments

By Wilson's theorem, if prime(n+1) - prime(n) = 2 then a(n) = 1.
However a(991) = 1, while prime(992) - prime(991) = 7853 - 7841 = 12. See A286181, A286208, A286230. - Robert Israel, Jul 17 2016

Crossrefs

Programs

  • Mathematica
    Table[Mod[#!, NextPrime@ #] &@ Prime@ n, {n, 120}] (* Michael De Vlieger, Jul 17 2016 *)
  • PARI
    a(n) = prime(n)! % prime(n+1); \\ Michel Marcus, Jul 17 2016
    
  • PARI
    a(n,p=prime(n))=my(q=nextprime(p+1)); if(p==2, 2, lift( 1/prod(r=p+1,q-2, Mod(r,q)) ) ); \\ Charles R Greathouse IV, Jul 18 2016; corrected by Max Alekseyev, May 03 2017
    
  • PARI
    a(n,p=prime(n)) = my(q=nextprime(p+1)); if(p==2, 2, (1/(q-p-1)!)%q); \\ Max Alekseyev, May 03 2017
    
  • Python
    from sympy import prime
    from sympy.core.numbers import igcdex
    def A275111(n):
        p, q = prime(n), prime(n+1)
        a = q-1
        for i in range(p+1,q):
            a = (a*igcdex(i,q)[0]) % q
        return a # Chai Wah Wu, Jul 18 2016
    
  • Python
    from functools import reduce
    from sympy import prime
    def A275111(n): return ((q:=prime(n+1))-1)*pow(reduce(lambda i,j:i*j%q,range(prime(n)+1,q),1),-1,q)%q # Chai Wah Wu, Feb 24 2023

Formula

For n>1, a(n) = 1/((prime(n)+1)*(prime(n)+2)*...*(prime(n+1)-2)) mod prime(n+1). - Robert Israel, Jul 17 2016; corrected by Max Alekseyev, May 03 2017
For n>1, a(n) = 1/(prime(n+1)-prime(n)-1)! mod prime(n+1) = 1/(A001223(n)-1)! mod A000040(n+1). - Max Alekseyev, May 03 2017

Extensions

More terms from Altug Alkan, Jul 17 2016