A275112 Zero together with the partial sums of A064412.
0, 1, 6, 20, 52, 112, 215, 375, 613, 948, 1407, 2013, 2799, 3793, 5034, 6554, 8398, 10603, 13220, 16290, 19870, 24006, 28761, 34185, 40347, 47302, 55125, 63875, 73633, 84463, 96452, 109668, 124204, 140133, 157554, 176544, 197208, 219628, 243915, 270155, 298465, 328936, 361691, 396825, 434467, 474717, 517710, 563550, 612378, 664303, 719472
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, Illustration of initial terms of this sequence and A064412
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,4,-4,2,2,-3,1).
Programs
-
Mathematica
{0}~Join~Accumulate@ CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 49}], x] (* Michael De Vlieger, Jul 18 2016, after Wesley Ivan Hurt at A064412, or *) Table[(14 n^4 + 36 n^3 + 36 n^2 + 42 n + 11 + 3 (2 n - 1) (-1)^n - 8 (-1)^(((2 n - 1 + (-1)^n))/4))/128, {n, 50}] (* Michael De Vlieger, Jul 18 2016 *) LinearRecurrence[{3,-2,-2,4,-4,2,2,-3,1},{0,1,6,20,52,112,215,375,613},60] (* Harvey P. Dale, Jun 19 2022 *)
-
PARI
concat(0, Vec(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^5*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Jul 18 2016
Formula
a(n) = (28*n^4+36*n^3+18*n^2+12*n+(1-(-1)^n))/16 for n even.
a(n) = (28*n^4+92*n^3+114*n^2+68*n+17-(-1)^n)/16 for n odd.
a(n) = (14*n^4+36*n^3+36*n^2+42*n+11+3*(2*n-1)*(-1)^n-8*(-1)^(((2*n-1+(-1)^n))/4))/128.
G.f.: x*(1+x+x^2)*(1+2*x+x^2+3*x^3) / ((1-x)^5*(1+x)^2*(1+x^2)). - Colin Barker, Jul 18 2016