cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275112 Zero together with the partial sums of A064412.

Original entry on oeis.org

0, 1, 6, 20, 52, 112, 215, 375, 613, 948, 1407, 2013, 2799, 3793, 5034, 6554, 8398, 10603, 13220, 16290, 19870, 24006, 28761, 34185, 40347, 47302, 55125, 63875, 73633, 84463, 96452, 109668, 124204, 140133, 157554, 176544, 197208, 219628, 243915, 270155, 298465, 328936, 361691, 396825, 434467, 474717, 517710, 563550, 612378, 664303, 719472
Offset: 0

Views

Author

Luce ETIENNE, Jul 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 49}], x] (* Michael De Vlieger, Jul 18 2016, after Wesley Ivan Hurt at A064412, or *)
    Table[(14 n^4 + 36 n^3 + 36 n^2 + 42 n + 11 + 3 (2 n - 1) (-1)^n - 8 (-1)^(((2 n - 1 + (-1)^n))/4))/128, {n, 50}] (* Michael De Vlieger, Jul 18 2016 *)
    LinearRecurrence[{3,-2,-2,4,-4,2,2,-3,1},{0,1,6,20,52,112,215,375,613},60] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    concat(0, Vec(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^5*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Jul 18 2016

Formula

a(n) = (28*n^4+36*n^3+18*n^2+12*n+(1-(-1)^n))/16 for n even.
a(n) = (28*n^4+92*n^3+114*n^2+68*n+17-(-1)^n)/16 for n odd.
a(n) = (14*n^4+36*n^3+36*n^2+42*n+11+3*(2*n-1)*(-1)^n-8*(-1)^(((2*n-1+(-1)^n))/4))/128.
G.f.: x*(1+x+x^2)*(1+2*x+x^2+3*x^3) / ((1-x)^5*(1+x)^2*(1+x^2)). - Colin Barker, Jul 18 2016