A275118 Split primes p such that prime P lying above p is a Wieferich place of K (with discriminant D_K), for some imaginary quadratic field K of class number 1.
5, 11, 13, 181, 1523, 1741, 2521, 19531, 24421, 29789, 76543, 108529, 489061, 880301, 1769069, 6811741
Offset: 1
Links
- D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, Computation of Iwasawa Lambda invariants for imaginary quadratic fields, Journal of Number Theory, Vol. 37, No. 1 (1991), 100-121.
- Á. Lozano-Robledo, Bernoulli-Hurwitz numbers, Wieferich primes and Galois representations, Journal of Number Theory, Vol. 130, No. 3 (2010), 539-558. See table 2 on page 555.
Crossrefs
Cf. A239902.
Programs
-
Sage
def is_A275118(k): if not Integer(k).is_prime(): return False for D in [1, 2, 3, 7, 11, 19, 43, 67, 163]: fct = QuadraticField(-D).ideal(k).factor() if len(fct)==2: pi = fct[1][0].gens_reduced()[0] if (pi^(k-1) - 1).valuation(fct[0][0]) > 1: return True return False print([k for k in range(10^7) if is_A275118(k)]) # Robin Visser, Apr 26 2024
Extensions
a(11)-a(16) from Robin Visser, Apr 26 2024