A275283
Number of set partitions of [2n] with symmetric block size list of length n.
Original entry on oeis.org
1, 1, 3, 19, 171, 2066, 31346, 559987, 11954993, 282835456, 7785919355, 229359684137, 7731656573016, 272633076900991, 10876116332074739, 446659746000614675, 20580725671071449149, 964732749192326683508, 50418595763262446272127, 2656265906893413392905767
Offset: 0
a(0) = 1: {}.
a(1) = 1: 12.
a(2) = 3: 12|34, 13|24, 14|23.
a(3) = 19: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 1|2345|6, 1|2346|5, 15|23|46, 1|2356|4, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 1|2456|3, 16|24|35, 15|26|34, 16|25|34.
-
b[n_, s_] := b[n, s] = Expand[If[n>s, Binomial[n-1, n-s-1]*x, 1] + Sum[Binomial[n-1, j-1]*b[n-j, s+j]*Binomial[s+j-1, j-1], {j, 1, (n-s)/2}]*x^2];
T[n_] := T[n] = Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
a[n_] := T[2n][[n+1]];
a /@ Range[0, 20] (* Jean-François Alcover, Aug 21 2021,after Alois P. Heinz in A275281 *)
A305197
Number of set partitions of [n] with symmetric block size list of length A004525(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 19, 56, 171, 470, 2066, 10299, 31346, 91925, 559987, 3939653, 11954993, 36298007, 282835456, 2571177913, 7785919355, 24158837489, 229359684137, 2557117944391, 7731656573016, 24350208829581, 272633076900991, 3601150175699409, 10876116332074739
Offset: 0
-
b:= proc(n, s) option remember; expand(`if`(n>s,
binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
end:
a:= n-> coeff(b(n, 0), x, (n+sin(n*Pi/2))/2):
seq(a(n), n=0..30);
-
b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1]*x, 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}]*x^2];
a[n_] := Coefficient[b[n, 0], x, (n + Sin[n*Pi/2])/2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 13 2018, from Maple *)
A275289
Number of set partitions of [n] with symmetric block size list of length three.
Original entry on oeis.org
1, 2, 7, 19, 56, 160, 463, 1337, 3874, 11241, 32682, 95172, 277577, 810706, 2370839, 6941473, 20345618, 59692831, 175295996, 515217034, 1515478535, 4460940067, 13140081770, 38729776774, 114221851951, 337050020750, 995097461503, 2939337252651, 8686270661400
Offset: 3
A305198
Number of set partitions of [2n+1] with symmetric block size list of length A109613(n).
Original entry on oeis.org
1, 1, 7, 56, 470, 10299, 91925, 3939653, 36298007, 2571177913, 24158837489, 2557117944391, 24350208829581, 3601150175699409, 34626777577615921, 6820331445080882282, 66066554102006208712, 16719951521837764142510, 162903256982698962545956
Offset: 0
-
b:= proc(n, s) option remember; expand(`if`(n>s,
binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
end:
a:= n-> coeff(b(2*n+1, 0), x, n+irem(n+1, 2)):
seq(a(n), n=0..20);
-
b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1] x, 1] + Sum[Binomial[n - 1, j - 1] b[n - j, s + j] Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}] x^2];
a[n_] := Coefficient[b[2n + 1, 0], x, n + Mod[n + 1, 2]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A275282
Number of set partitions of [n] with symmetric block size list.
Original entry on oeis.org
1, 1, 2, 2, 7, 9, 47, 80, 492, 985, 7197, 16430, 139316, 361737, 3425683, 9939134, 103484333, 329541459, 3747921857, 12980700318, 159811532315, 598410986533, 7902918548186, 31781977111506, 447462660895105, 1920559118957107, 28699615818386524, 130838216971937408
Offset: 0
a(3) = 2: 123, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4.
a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5.
-
b:= proc(n, s) option remember; `if`(n>s,
binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)*
b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2)
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30);
-
b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
A275290
Number of set partitions of [n] with symmetric block size list of length five.
Original entry on oeis.org
1, 3, 22, 86, 470, 2066, 10299, 47503, 229792, 1081851, 5189068, 24671320, 118223765, 565269659, 2713032552, 13022313334, 62644482305, 301600159952, 1454293747517, 7019496361595, 33922782653124, 164099194834163, 794642770006896, 3851565096708617
Offset: 5
a(6) = 3: 1|2|34|5|6, 1|2|35|4|6, 1|2|36|4|5.
a(7) = 22: 12|3|4|5|67, 13|2|4|5|67, 1|23|4|56|7, 1|23|4|57|6, 14|2|3|5|67, 1|24|3|56|7, 1|24|3|57|6, 1|2|345|6|7, 1|2|346|5|7, 1|2|347|5|6, 15|2|3|4|67, 1|25|3|46|7, 1|25|3|47|6, 1|2|356|4|7, 1|2|357|4|6, 1|26|3|45|7, 1|27|3|45|6, 16|2|3|4|57, 1|26|3|47|5, 1|2|367|4|5, 1|27|3|46|5, 17|2|3|4|56.
A275291
Number of set partitions of [n] with symmetric block size list of length seven.
Original entry on oeis.org
1, 4, 50, 250, 2160, 12256, 91925, 559987, 3939653, 24964844, 170468820, 1104449861, 7440709045, 48835462696, 327230257098, 2164985118201, 14485751773693, 96353703793654, 644984901718337, 4306885857654070, 28868100135841407, 193352040530826181
Offset: 7
a(8) = 4: 1|2|3|45|6|7|8, 1|2|3|46|5|7|8, 1|2|3|47|5|6|8, 1|2|3|48|5|6|7.
A275292
Number of set partitions of [n] with symmetric block size list of length nine.
Original entry on oeis.org
1, 5, 95, 575, 7175, 49091, 513206, 3800358, 36298007, 282835456, 2571177913, 20702222482, 183079272792, 1505743012484, 13114463722858, 109381638489849, 944974537003694, 7956650229728706, 68468581589476475, 580345660548809882, 4986413617279183229
Offset: 9
a(10) = 5: 1|2|3|4|56|7|8|9|(10), 1|2|3|4|57|6|8|9|(10), 1|2|3|4|58|6|7|9|(10), 1|2|3|4|59|6|7|8|(10), 1|2|3|4|5(10)|6|7|8|9.
A275293
Number of set partitions of [2n] with symmetric block size list of length four.
Original entry on oeis.org
1, 13, 171, 2306, 31795, 446349, 6357295, 91615780, 1333116522, 19555739050, 288834920011, 4291094756898, 64074785496631, 961011037139573, 14469795095794935, 218624167641077960, 3313409217150899536, 50356639055387740752, 767231549954564821746
Offset: 2
a(3) = 13: 12|3|4|56, 13|2|4|56, 1|23|45|6, 1|23|46|5, 14|2|3|56, 1|24|35|6, 1|24|36|5, 1|25|34|6, 1|26|34|5, 15|2|3|46, 1|25|36|4, 1|26|35|4, 16|2|3|45.
Bisection of column k=4 of
A275281.
-
a:= proc(n) option remember; `if`(n<3, [0$2, 1, 13][n+1],
((n-1)*(4320-23328*n+1365*n^6-11072*n^5+35733*n^4
-58702*n^3+51744*n^2)*a(n-1)-(4*(2*n-5))*(n-1)*(n-2)
*(2*n-3)*(21*n^3-55*n^2+44*n-12)*a(n-2))/((2*(n-2))*
(2*n-1)*(21*n^3-118*n^2+217*n-132)*n^2))
end:
seq(a(n), n=2..30);
-
a[2] = 1; a[3] = 13; a[n_] := a[n] = ((n-1)*(4320 - 23328*n + 1365*n^6 - 11072*n^5 + 35733*n^4 - 58702*n^3 + 51744*n^2)*a[n-1] - (4*(2*n-5))*(n-1) *(n-2)*(2*n-3)*(21*n^3 - 55*n^2 + 44*n - 12)*a[n-2])/((2*(n-2))*(2*n-1)* (21*n^3 - 118*n^2 + 217*n - 132)*n^2);
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A275294
Number of set partitions of [2n] with symmetric block size list of length six.
Original entry on oeis.org
1, 34, 1035, 31346, 958708, 29677572, 929442097, 29416786597, 939795181248, 30273240306244, 982317847204631, 32081167538512119, 1053762976292882820, 34790825470327029730, 1153951843926244071285, 38433994194836318210579, 1284926817226752232868308
Offset: 3
a(3) = 1: 1|2|3|4|5|6.
a(4) = 34: 12|3|4|5|6|78, 13|2|4|5|6|78, 1|23|4|5|67|8, 1|23|4|5|68|7, 14|2|3|5|6|78, 1|24|3|5|67|8, 1|24|3|5|68|7, 1|2|34|56|7|8, 1|2|34|57|6|8, 1|2|34|58|6|7, 15|2|3|4|6|78, 1|25|3|4|67|8, 1|25|3|4|68|7, 1|2|35|46|7|8, 1|2|35|47|6|8, 1|2|35|48|6|7, 1|2|36|45|7|8, 1|2|37|45|6|8, 1|2|38|45|6|7, 16|2|3|4|5|78, 1|26|3|4|57|8, 1|26|3|4|58|7, 1|2|36|47|5|8, 1|2|36|48|5|7, 1|2|37|46|5|8, 1|2|38|46|5|7, 1|27|3|4|56|8, 1|28|3|4|56|7, 17|2|3|4|5|68, 1|27|3|4|58|6, 1|2|37|48|5|6, 1|2|38|47|5|6, 1|28|3|4|57|6, 18|2|3|4|5|67.
Bisection of column k=6 of
A275281.
Showing 1-10 of 12 results.