A275377 Number of odd prime factors (with multiplicity) of generalized Fermat number 3^(2^n) + 1.
0, 1, 1, 2, 1, 1, 1, 5, 4, 6
Offset: 0
Examples
b(n) = (3^(2^n) + 1)/2. Complete Factorizations b(0) = 2 b(1) = 5 b(2) = 41 b(3) = 17*193 b(4) = 21523361 b(5) = 926510094425921 b(6) = 1716841910146256242328924544641 b(7) = 257*275201*138424618868737*3913786281514524929*P21 b(8) = 12289*8972801*891206124520373602817*P90 b(9) = 134382593*22320686081*12079910333441*100512627347897906177*P93*P101
Links
- Arkadiusz Wesolowski, A 93-digit prime factor of b(9)
Programs
-
PARI
a001222(n) = bigomega(n) a059919(n) = 3^(2^n)+1 a(n) = if(n==0, 0, a001222(a059919(n))-1) \\ Felix Fröhlich, Jul 25 2016
Formula
Extensions
a(9) was found in 2008 by Tom Womack