A275378 Number of odd prime factors (with multiplicity) of generalized Fermat number 5^(2^n) + 1.
1, 1, 1, 2, 2, 3, 3, 3, 5
Offset: 0
Examples
b(n) = (5^(2^n) + 1)/2. Complete Factorizations b(0) = 3 b(1) = 13 b(2) = 313 b(3) = 17*11489 b(4) = 2593*29423041 b(5) = 641*75068993*241931001601 b(6) = 769*3666499598977*96132956782643741951225664001 b(7) = 257*23653200983830003298459393*P62 b(8) = 1655809*101199664791578113*4563566430220614493697* 12025702000065183805751513732616276516181800961*P88
Links
- factordb.com, Status of 5^(2^n)+1.
Programs
-
Mathematica
Table[PrimeOmega[(5^(2^n) + 1)/2], {n, 0, 6}] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
a(n) = bigomega(factor((5^(2^n)+1)/2))