A275380 Number of odd prime factors (with multiplicity) of generalized Fermat number 7^(2^n) + 1.
0, 2, 1, 2, 2, 3, 3, 5, 3, 6
Offset: 0
Examples
b(n) = (7^(2^n) + 1)/2. Complete Factorizations b(0) = 2*2 b(1) = 5*5 b(2) = 1201 b(3) = 17*169553 b(4) = 353*47072139617 b(5) = 7699649*134818753*531968664833 b(6) = 35969*1110623386241*15266848196793556098085000332888634369 b(7) = 257*769*197231873*6856531741041792239054980342217258517995521*P52 b(8) = 28667393*126575155274810369*P192 b(9) = 13313*943558259713* 275102002206713516320479233*1338330888777063359811677099009* 656929861401793262700329631944023570433*P321
Formula
Extensions
a(9) was found by Nestor de Araújo Melo and Geoffrey Reynolds (2008)