A275382 Number of odd prime factors (with multiplicity) of generalized Fermat number 11^(2^n) + 1.
1, 1, 1, 2, 2, 3, 2, 5, 6
Offset: 0
Examples
b(n) = (11^(2^n) + 1)/2. Complete Factorizations b(0) = 2*3 b(1) = 61 b(2) = 7321 b(3) = 17*6304673 b(4) = 51329*447600088289 b(5) = 193*257*21283620033217629539178799361 b(6) = 316955440822738177*P49 b(7) = 15361*111489577217*574341646346402207998363393* 4018529583345312964042058778793458689*P55 b(8) = 15190529*4696846849*19618834249745000485889* 4393553986026616439660661873903822389581313* 290103547098489711747952055517085778590240759297*P138
Programs
-
PARI
a001222(n) = bigomega(n) a199592(n) = 11^(2^n)+1 a(n) = if(n==0, 1, a001222(a199592(n))-1) \\ Felix Fröhlich, Jul 25 2016
Formula
Extensions
a(8) was found in 2006 by Bruce Dodson