A275383 Number of prime factors (with multiplicity) of generalized Fermat number 12^(2^n) + 1.
1, 2, 2, 3, 2, 2, 5, 2, 5
Offset: 0
Examples
b(n) = 12^(2^n) + 1. Complete Factorizations b(0) = 13 b(1) = 5*29 b(2) = 89*233 b(3) = 17*97*260753 b(4) = 153953*1200913648289 b(5) = 769*44450180997616192602560262634753 b(6) = 36097*81281*69619841*73389730593973249*P35 b(7) = 257*P136 b(8) = 8253953*295278642689*5763919006323142831065059613697*P96*P132
Links
- Arkadiusz Wesolowski, A 96-digit prime factor of b(8)
Programs
-
Mathematica
Table[PrimeOmega[12^(2^n) + 1], {n, 0, 7}] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
a(n) = bigomega(factor(12^(2^n)+1))
Formula
Extensions
a(8) was found in 2009 by Tom Womack