cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275421 Triangle read by rows: T(n,k) = number of graphs with n edges and k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 12, 8, 4, 1, 1, 30, 23, 9, 4, 1, 1, 79, 57, 26, 9, 4, 1, 1, 227, 160, 68, 27, 9, 4, 1, 1, 710, 456, 197, 71, 27, 9, 4, 1, 1, 2322, 1402, 567, 208, 72, 27, 9, 4, 1, 1, 8071, 4468, 1748, 604, 211, 72, 27, 9, 4, 1, 1, 29503, 15071, 5555, 1874
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

Multiset transformation of A002905.

Examples

			      1
      1     1
      3     1     1
      5     4     1     1
     12     8     4     1     1
     30    23     9     4     1     1
     79    57    26     9     4     1     1
    227   160    68    27     9     4     1     1
    710   456   197    71    27     9     4     1     1
   2322  1402   567   208    72    27     9     4     1     1
   8071  4468  1748   604   211    72    27     9     4     1     1
  29503 15071  5555  1874   615   212    72    27     9     4     1
		

Crossrefs

Cf. A002905 (column 1), A000664 (row sums).

Programs

  • Mathematica
    rows = 12;
    A002905 = Import["https://oeis.org/A002905/b002905.txt", "Table"][[All, 2]];
    gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}];
    Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)

Formula

T(n,1) = A002905(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - Alois P. Heinz, Apr 13 2017