A000664
Number of graphs with n edges.
Original entry on oeis.org
1, 1, 2, 5, 11, 26, 68, 177, 497, 1476, 4613, 15216, 52944, 193367, 740226, 2960520, 12334829, 53394755, 239544624, 1111261697, 5320103252, 26237509076, 133087001869, 693339241737, 3705135967663, 20286965943329, 113694201046379, 651571521170323, 3815204365835840, 22806847476040913, 139088381010541237, 864777487052916454
Offset: 0
n=1: o-o (1)
n=2: o-o o-o, o-o-o (2)
n=3: o-o o-o o-o, o-o-o o-o, o-o-o-o, Y, triangle (5)
n=4: o-o o-o o-o o-o, o-o-o o-o o-o, o-o-o o-o-o, o-o o-o-o-o, o-o Y, o-o triangle,
o-o-o-o-o, >o-o-o, ><, square, triangle with tail (11)
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Max Alekseyev, Table of n, a(n) for n = 0..60
- Nicolas Borie, The Hopf Algebra of graph invariants, arXiv preprint arXiv:1511.05843 [math.CO], 2015.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Fran Herr and Legrand Jones II, Iterated Jump Graphs, arXiv:2205.01796 [math.CO], 2022.
- M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Overview of the 11 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 1
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 2
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 3
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 4
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 5
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 6
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 7
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 8
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 9
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 10
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 11
-
<< Combinatorica`; Table[NumberOfGraphs[2 n, n], {n, 0, 10}] (* Eric W. Weisstein, Oct 30 2017 *)
<< Combinatorica`; Table[Coefficient[GraphPolynomial[2 n, x], x, n], {n, 0, 10}] (* Eric W. Weisstein, Oct 30 2017 *)
Example for n=2 corrected by Adrian Falcone (falcone(AT)gmail.com), Jan 28 2009
A002905
Number of connected graphs with n edges.
Original entry on oeis.org
1, 1, 1, 3, 5, 12, 30, 79, 227, 710, 2322, 8071, 29503, 112822, 450141, 1867871, 8037472, 35787667, 164551477, 779945969, 3804967442, 19079312775, 98211456209, 518397621443, 2802993986619, 15510781288250, 87765472487659, 507395402140211, 2994893000122118, 18035546081743772, 110741792670074054, 692894304050453139
Offset: 0
a(3) = 3 since the three connected graphs with three edges are a path, a triangle and a "Y".
The first difference between this sequence and A046091 is for n=9 edges where we see K_{3,3}, the well-known "utility graph".
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Max Alekseyev, Table of n, a(n) for n = 0..60
- G. A. Baker et al., High-temperature expansions for the spin-1/2 Heisenberg model, Phys. Rev., 164 (1967), 800-817.
- Nicolas Borie, The Hopf Algebra of graph invariants, arXiv preprint arXiv:1511.05843 [math.CO], 2015.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Mike Cummings and Adam Van Tuyl, The GeometricDecomposability package for Macaulay2, arXiv:2211.02471 [math.AC], 2022.
- Anjan Dutta and Hichem Sahbi, Graph Kernels based on High Order Graphlet Parsing and Hashing, arXiv:1803.00425 [cs.CV], 2018.
- Gordon Royle, Small graphs
- M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 1 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Polynema.
A191646
Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 5, 3;
0, 1, 4, 11, 11, 6;
0, 1, 6, 22, 34, 29, 11;
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1274 (terms 0..119 from R. J. Mathar)
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; see Section 4.
- Brendan McKay and Adolfo Piperno, nauty and Traces. [nauty and Traces are programs for computing automorphism groups of graphs and digraphs.]
- B. D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation 60 (2013), 94-112.
- Gordon Royle, Small Multigraphs.
- Gus Wiseman, Illustration of the 33 connected multigraphs counted in row 5.
Cf.
A000664,
A007718,
A036250,
A050535,
A191646,
A191970,
A275421,
A317672,
A322114,
A322133,
A322152.
-
EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2,0,x^(t/2)))}
G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
R(n)={Mat(apply(p->Col(p+O(y^n),-n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
{ my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018
A322114
Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235
Offset: 0
Triangle begins:
1
1 1
0 1 1
0 1 3 2
0 0 3 6 3
0 0 2 11 14 6
0 0 1 13 35 33 11
Non-isomorphic representatives of the graphs counted in row 4:
{{2}{3}{12}{13}} {{4}{12}{23}{34}} {{13}{24}{35}{45}}
{{2}{3}{13}{23}} {{4}{13}{23}{34}} {{14}{25}{35}{45}}
{{3}{12}{13}{23}} {{4}{13}{24}{34}} {{15}{25}{35}{45}}
{{4}{14}{24}{34}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
-
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019
A076864
Number of connected loopless multigraphs with n edges.
Original entry on oeis.org
1, 1, 2, 5, 12, 33, 103, 333, 1183, 4442, 17576, 72810, 314595, 1410139, 6541959, 31322474, 154468852, 783240943, 4077445511, 21765312779, 118999764062, 665739100725, 3807640240209, 22246105114743, 132672322938379, 807126762251748
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph], 2017.
- Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku Nishimura, Tadashi Sakuma, and Shuhei Tsujie, Universal graph series, chromatic functions, and their index theory, arXiv:2403.09985 [math.CO], 2024. See p. 23.
- N. J. A. Sloane, Transforms
- Gus Wiseman, Non-isomorphic representatives of the unlabeled connected multigraphs counted by the first 5 terms
-
A050535 = Cases[Import["https://oeis.org/A050535/b050535.txt", "Table"], {, }][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
Join[{1}, EulerInvTransform[A050535 // Rest]] (* Jean-François Alcover, Feb 11 2020, updated Mar 17 2020 *)
A191970
Number of connected graphs with n edges with loops allowed.
Original entry on oeis.org
1, 2, 2, 6, 12, 33, 93, 287, 940, 3309, 12183, 47133, 190061, 796405, 3456405, 15501183, 71681170, 341209173, 1669411182, 8384579797, 43180474608, 227797465130, 1229915324579, 6790642656907, 38311482445514, 220712337683628, 1297542216770482, 7779452884747298
Offset: 0
a(1)=2: Either one node with the edge equal to a loop, or two nodes connected by the edge. a(2)=2: Either three nodes on a chain connected by the two edges, or two nodes connected by an edge, one node with a loop. Apparently multi-loops are not allowed (?). - _R. J. Mathar_, Jul 25 2017
Cf.
A000664,
A002905,
A007718,
A050535,
A053419,
A054923,
A191646,
A191970,
A275421,
A322133,
A322151,
A322152.
-
\\ See A322114 for InvEulerMT, G.
seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019
A322115
Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 6, 11, 9, 3, 1, 9, 25, 34, 20, 6, 1, 12, 52, 104, 99, 49, 11, 1, 16, 94, 274, 387, 298, 118, 23, 1, 20, 162, 645, 1295, 1428, 881, 300, 47, 1, 25, 263, 1399, 3809, 5803, 5088, 2643, 765, 106, 1, 30, 407, 2823, 10187, 20645, 24606, 17872, 7878, 1998, 235
Offset: 0
Triangle begins:
1
1 1
1 2 1
1 4 4 2
1 6 11 9 3
1 9 25 34 20 6
1 12 52 104 99 49 11
-
EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
{ my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Nov 30 2018
A322137
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
Offset: 0
Cf.
A000664,
A002905,
A007718,
A013922,
A054923,
A057500,
A191646,
A275421,
A291842 (planar case),
A322114,
A322115.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1],{2}],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,6}]
-
Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j,2)))))} \\ Andrew Howroyd, Nov 28 2018
A322147
Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 1, 1, 0, 2, 3, 0, 1, 10, 16, 0, 0, 12, 79, 125, 0, 0, 6, 162, 847, 1296, 0, 0, 1, 179, 2565, 11436, 16807, 0, 0, 0, 116, 4615, 47100, 185944, 262144, 0, 0, 0, 45, 5540, 121185, 987567, 3533720, 4782969, 0, 0, 0, 10, 4720, 220075, 3376450, 23315936, 76826061, 100000000
Offset: 0
Triangle begins:
1
1 1
0 2 3
0 1 10 16
0 0 12 79 125
0 0 6 162 847 1296
0 0 1 179 2565 11436 16807
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[If[n==0,1,Length[Select[Subsets[multsubs[Range[k],2],{n}],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,6},{k,1,n+1}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1,2)))[1..n+1]])}
{ my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ Andrew Howroyd, Nov 29 2018
A322133
Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 8, 3, 1, 0, 7, 17, 12, 3, 1, 0, 11, 46, 45, 18, 4, 1, 0, 15, 94, 141, 76, 23, 4, 1, 0, 22, 212, 432, 333, 124, 30, 5, 1, 0, 30, 416, 1231, 1254, 622, 178, 37, 5, 1, 0, 42, 848, 3346, 4601, 2914, 1058, 252, 45, 6, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
0 3 2 1
0 5 8 3 1
0 7 17 12 3 1
0 11 46 45 18 4 1
0 15 94 141 76 23 4 1
0 22 212 432 333 124 30 5 1
0 30 416 1231 1254 622 178 37 5 1
0 42 848 3346 4601 2914 1058 252 45 6 1
Non-isomorphic representatives of the multiset partitions counted in row 4:
{{1,1,1,1}} {{1,1,2,2}} {{1,2,3,3}} {{1,2,3,4}}
{{1},{1,1,1}} {{1,2,2,2}} {{1,3},{2,3}}
{{1,1},{1,1}} {{1},{1,2,2}} {{3},{1,2,3}}
{{1},{1},{1,1}} {{1,2},{1,2}}
{{1},{1},{1},{1}} {{1,2},{2,2}}
{{2},{1,2,2}}
{{1},{2},{1,2}}
{{2},{2},{1,2}}
Cf.
A000664,
A007716,
A054923,
A191646,
A191970,
A275421,
A286520,
A317672,
A319719,
A321155,
A321254,
A322114.
-
\\ Needs G(m,n) defined in A317533 (faster PARI).
InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 15 2024
Showing 1-10 of 12 results.
Comments