A275423 Number of set partitions of [n] such that five is a multiple of each block size.
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 379, 1849, 9109, 37324, 128129, 507508, 3031393, 19609773, 108440893, 500515633, 2467616641, 17154715726, 134519207131, 927764339426, 5359830269641, 31580724696907, 248587878630807, 2259650025239257, 18541914182165557
Offset: 0
Keywords
Examples
a(6) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..619
- Wikipedia, Partition of a set
Crossrefs
Column k=5 of A275422.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 5])) end: seq(a(n), n=0..30); # second Maple program: seq(simplify(hypergeom([-n/5, (1-n)/5, (2-n)/5, (3-n)/5, (4-n)/5], [], -625/24)), n = 0..28); # Karol A. Penson, Sep 14 2023.
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 5}}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
PARI
a(n) = n!*sum(k=0, n\5, 1/5!^k*binomial(n-4*k, k)/(n-4*k)!); \\ Seiichi Manyama, Feb 26 2022
-
PARI
a(n) = if(n<5, 1, a(n-1)+binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 26 2022
Formula
E.g.f.: exp(x+x^5/5!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/5)} (1/5!)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) + binomial(n-1,4) * a(n-5) for n > 4. (End)
a(n) = hypergeom([-n/5,(1-n)/5,(2-n)/5,(3-n)/5,(4-n)/5],[],-625/24). - Karol A. Penson, Sep 14 2023.