A275585 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).
1, 1, 6, 16, 52, 128, 373, 913, 2399, 5796, 14298, 33655, 79756, 183078, 419846, 942807, 2106176, 4633208, 10127557, 21870997, 46912648, 99639685, 210206722, 439777198, 914157490, 1886428608, 3869204040, 7884691072, 15976273573, 32182538964, 64484592372, 128518359868, 254868985099, 502950483815, 987904826874, 1931596634076
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to sums of divisors
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*sigma[2](d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jun 08 2017
-
Mathematica
nmax = 35; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[2, k]), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^k)^(sigma_2(k)).
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027847(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 08 2017
a(n) ~ exp(4*Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) - Pi * 5^(1/4) * n^(1/4) / (8 * 3^(7/4) * Zeta(3)^(1/4)) + Zeta(3) / (8*Pi^2)) * Zeta(3)^(1/8) / (2^(3/2) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_3(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018
Comments