A275697 Primes p such that gcd(p-1, q-1) = q - p, where q is the next prime after p.
2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 59, 61, 71, 73, 89, 97, 101, 107, 109, 113, 137, 149, 151, 157, 179, 181, 191, 193, 197, 227, 229, 239, 241, 269, 271, 277, 281, 311, 313, 331, 347, 349, 367, 373, 397, 401, 419, 421, 431, 433, 449, 457, 461, 521, 523
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= select(isprime, [2,seq(i,i=3..nextprime(N),2)]): P[select(i -> (P[i] - 1) mod (P[i+1]-P[i]) = 0, [$1..nops(P)-1])];
-
Mathematica
Select[Partition[Prime[Range[100]],2,1],GCD[#[[1]]-1,#[[2]]-1] == #[[2]]- #[[1]]&][[All,1]] (* Harvey P. Dale, Apr 18 2018 *)
-
PARI
is(n) = ispseudoprime(n) && gcd(n-1, nextprime(n+1)-1)==nextprime(n+1)-n \\ Felix Fröhlich, Aug 06 2016
Comments