A275701
Numbers n whose abundance is 26: sigma(n) - 2n = 26.
Original entry on oeis.org
80, 1184, 6464, 29312, 78975, 510464, 557192, 137431875584, 549741658112, 8796036399104, 35184258842624, 2251798907715584
Offset: 1
a(1) = 80, since sigma(80)-2*80 = 186-160 = 26.
a(2) = 1184, since sigma(1184)-2*1184 = 2394-2368 = 26.
a(3) = 6464, since sigma(6464)-2*6464 = 12954-12928 = 26.
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 26]; // Vincenzo Librandi, Sep 16 2016
-
Select[Range[10^7], DivisorSigma[1, #] - 2 # == 26 &] (* Vincenzo Librandi, Sep 16 2016 *)
-
isok(n) = sigma(n) - 2*n == 26; \\ Michel Marcus, Sep 15 2016
A275750
Prime numbers of the form 4^k - 27.
Original entry on oeis.org
37, 229, 997, 1048549, 4194277, 67108837, 1125899906842597, 72057594037927909, 288230376151711717, 1361129467683753853853498429727072845797, 1393796574908163946345982392040522594123749, 1725436586697640946858688965569256363112777243042596638790631055949797
Offset: 1
a(1) = 4^A274519(1) - 27 = 4^3 - 27 = 64 - 27 = 37.
a(2) = 4^A274519(2) - 27 = 4^4 - 27 = 256 - 27 = 229.
a(3) = 4^A274519(3) - 27 = 4^5 - 27 = 1024 - 27 = 997.
a(4) = 4^A274519(4) - 27 = 4^10 - 27 = 1048576 - 27 = 1048549.
a(5) = 4^A274519(5) - 27 = 4^11 - 27 = 4194304 - 27 = 4194277.
a(6) = 4^A274519(6) - 27 = 4^13 - 27 = 67108864 - 27 = 67108837.
A275767
Numbers k for which 2*4^k - 27 is prime.
Original entry on oeis.org
2, 3, 9, 11, 291, 1263, 2661, 3165, 8973, 8999, 27479, 42689
Offset: 1
a(1) = 2, since 2*4^2 - 27 = 32 - 27 = 5, which is prime.
a(2) = 3, since 2*4^3 - 27 = 128 - 27 = 101, which is prime.
a(3) = 9, since 2*4^9 - 27 = 524288 - 27 = 524261, which is prime.
a(4) = 11, since 2*4^11 - 27 = 8388608 - 27 = 8388581, which is prime.
-
[n: n in [2..1000] |IsPrime(2*4^n-27)]; // Vincenzo Librandi, Aug 08 2016
-
Select[Range[2, 1000], PrimeQ[2 4^# - 27] &] (* Vincenzo Librandi, Aug 08 2016 *)
-
from sympy import isprime
def afind(limit, startk=2):
alst, pow4 = [], 4**startk
for k in range(startk, limit+1):
if isprime(2*pow4 - 27): print(k, end=", ")
pow4 *= 4
afind(1300) # Michael S. Branicky, Sep 22 2021
Showing 1-3 of 3 results.
Comments