A275701
Numbers n whose abundance is 26: sigma(n) - 2n = 26.
Original entry on oeis.org
80, 1184, 6464, 29312, 78975, 510464, 557192, 137431875584, 549741658112, 8796036399104, 35184258842624, 2251798907715584
Offset: 1
a(1) = 80, since sigma(80)-2*80 = 186-160 = 26.
a(2) = 1184, since sigma(1184)-2*1184 = 2394-2368 = 26.
a(3) = 6464, since sigma(6464)-2*6464 = 12954-12928 = 26.
-
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 26]; // Vincenzo Librandi, Sep 16 2016
-
Select[Range[10^7], DivisorSigma[1, #] - 2 # == 26 &] (* Vincenzo Librandi, Sep 16 2016 *)
-
isok(n) = sigma(n) - 2*n == 26; \\ Michel Marcus, Sep 15 2016
A275749
Prime numbers of the form 2*4^k - 27.
Original entry on oeis.org
5, 101, 524261, 8388581
Offset: 1
a(1) = 2*4^A275767(1) - 27 = 2*4^2 - 27 = 32 - 27 = 5.
a(2) = 2*4^A275767(2) - 27 = 2*4^3 - 27 = 128 - 27 = 101.
a(3) = 2*4^A275767(3) - 27 = 2*4^9 - 27 = 524288 - 27 = 524261.
a(4) = 2*4^A275767(4) - 27 = 2*4^11 - 27 = 8388608 - 27 = 8388581.
A274519
Numbers k for which 4^k - 27 is prime.
Original entry on oeis.org
3, 4, 5, 10, 11, 13, 25, 28, 29, 65, 70, 115, 305, 515, 2029, 2393, 2605, 3530, 4036, 4750, 10288, 11048, 11596, 29359, 32123, 47371
Offset: 1
a(1) = 3, since 4^3 - 27 = 64 - 27 = 37, which is prime.
a(2) = 4, since 4^4 - 27 = 256 - 27 = 229, which is prime.
a(3) = 5, since 4^5 - 27 = 1024 - 27 = 997, which is prime.
a(4) = 10, since 4^10 - 27 = 1048576 - 27 = 1048549, which is prime.
a(5) = 11, since 4^11 - 27 = 4194304 - 27 = 4194277, which is prime.
a(6) = 13, since 4^13 - 27 = 67108864 - 27 = 67108837, which is prime.
-
[n: n in [3..2000] |IsPrime(4^n-27)]; // Vincenzo Librandi, Aug 08 2016
-
Select[Range[3, 5000], PrimeQ[4^# - 27] &] (* Vincenzo Librandi, Aug 08 2016 *)
-
from sympy import isprime
def afind(limit, startk=3):
alst, pow4 = [], 4**startk
for k in range(startk, limit+1):
if isprime(pow4 - 27): print(k, end=", ")
pow4 *= 4
afind(600) # Michael S. Branicky, Sep 22 2021
Showing 1-3 of 3 results.
Comments