A275970 a(n) = 3*2^n + n - 1.
2, 6, 13, 26, 51, 100, 197, 390, 775, 1544, 3081, 6154, 12299, 24588, 49165, 98318, 196623, 393232, 786449, 1572882, 3145747, 6291476, 12582933, 25165846, 50331671, 100663320, 201326617, 402653210, 805306395, 1610612764, 3221225501, 6442450974, 12884901919, 25769803808, 51539607585, 103079215138, 206158430243, 412316860452, 824633720869
Offset: 0
Links
- Carauleanu Marc, Table of n, a(n) for n = 0..400
- S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Mathematica
LinearRecurrence[{4,-5,2},{2,6,13}, 25] (* or *) Table[3*2^n + n - 1, {n,0,25}] (* G. C. Greubel, Aug 18 2016 *)
-
PARI
a(n)=3*2^n+n-1 \\ Charles R Greathouse IV, Aug 27 2016
Formula
a(n) = 2*a(n-1) - n + 2.
a(n+1) - a(n) = A181565(n)
a(n) = A007283(n) + n - 1
From G. C. Greubel, Aug 18 2016: (Start)
O.g.f.: (2 - 2*x - x^2)/( (1-2*x)*(1-x)^2 ).
E.g.f.: 3*exp(2*x) + (x-1)*exp(x).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-2). (End)