cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275970 a(n) = 3*2^n + n - 1.

Original entry on oeis.org

2, 6, 13, 26, 51, 100, 197, 390, 775, 1544, 3081, 6154, 12299, 24588, 49165, 98318, 196623, 393232, 786449, 1572882, 3145747, 6291476, 12582933, 25165846, 50331671, 100663320, 201326617, 402653210, 805306395, 1610612764, 3221225501, 6442450974, 12884901919, 25769803808, 51539607585, 103079215138, 206158430243, 412316860452, 824633720869
Offset: 0

Views

Author

Miquel Cerda, Aug 15 2016

Keywords

Programs

  • Mathematica
    LinearRecurrence[{4,-5,2},{2,6,13}, 25] (* or *) Table[3*2^n + n - 1, {n,0,25}] (* G. C. Greubel, Aug 18 2016 *)
  • PARI
    a(n)=3*2^n+n-1 \\ Charles R Greathouse IV, Aug 27 2016

Formula

a(n) = 2*a(n-1) - n + 2.
a(n+1) - a(n) = A181565(n)
a(n) = A007283(n) + n - 1
a(n) = A083706(n) + A000079(n)
a(n) = A145071(n+1) - A000079(n)
a(n) = A079583(n) + A005408(n)
a(n) = A068156(n+1) - A079583(n)
a(n) = (A068156(n+1) + A005408(n)) / 2
a(n) = A000225(n) + A000325(n+1) + A005408(n)
a(n) = A068156(n+1) - A000225(n) - A000325(n+1)
a(n) = A068156(n+1) - A007283(n) + n + 2.
a(n) = A000079(n) + A000225(n) + A000295(n) + A005408(n)
From G. C. Greubel, Aug 18 2016: (Start)
O.g.f.: (2 - 2*x - x^2)/( (1-2*x)*(1-x)^2 ).
E.g.f.: 3*exp(2*x) + (x-1)*exp(x).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-2). (End)