A275979 Decimal expansion of 2^9941 - 1, the 22nd Mersenne prime A000668(22).
3, 4, 6, 0, 8, 8, 2, 8, 2, 4, 9, 0, 8, 5, 1, 2, 1, 5, 2, 4, 2, 9, 6, 0, 3, 9, 5, 7, 6, 7, 4, 1, 3, 3, 1, 6, 7, 2, 2, 6, 2, 8, 6, 6, 8, 9, 0, 0, 2, 3, 8, 5, 4, 7, 7, 9, 0, 4, 8, 9, 2, 8, 3, 4, 4, 5, 0, 0, 6, 2, 2, 0, 8, 0, 9, 8, 3, 4, 1, 1, 4, 4, 6, 4, 3, 6, 4, 3, 7, 5, 5, 4, 4, 1, 5, 3, 7, 0, 7, 5, 3, 3, 6, 6, 4
Offset: 2993
Examples
34608828249085121524296039576741331672262866890023854779048928344500622...
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 2993..5985
- Wikipedia, Mersenne prime
Crossrefs
Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000688(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20), A275977 = A000668(21), A275980 = A000668(23), A275981 = A000668(24), A275982 = A000668(25), A275983 = A000668(26), A275984 = A000668(27).
Programs
-
Magma
Reverse(Intseq(2^9941-1))[1..105];
-
Mathematica
First@RealDigits@N[2^9941 - 1, 100] (* G. C. Greubel, Aug 15 2016 *)
-
PARI
eval(Vec(Str(2^9941-1)))[1..105]
Formula
2^A000043(22) - 1.