A276045 Primes p such that d(p*(2p+1)) = 8 where d(n) is the number of divisors of n (A000005).
7, 13, 17, 19, 43, 47, 59, 61, 71, 79, 101, 107, 109, 149, 151, 163, 167, 197, 223, 257, 263, 271, 311, 317, 347, 349, 353, 383, 389, 401, 421, 439, 449, 461, 479, 503, 521, 523, 557, 569, 599, 601, 613, 631, 673, 677, 691, 701, 811, 821, 827, 839, 853, 863, 881, 919
Offset: 1
Examples
d(7*(2*7+1))=d(105)=8 so 7 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(n -> isprime(n) and numtheory:-tau(n*(2*n+1))=8, [seq(i, i=3..1000, 2)]); # Robert Israel, Aug 17 2016
-
Mathematica
Select[Prime@ Range@ 160, DivisorSigma[0, # (2 # + 1)] == 8 &] (* Michael De Vlieger, Aug 28 2016 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (numdiv(p*(2*p+1))==8, print1(p, ", "))); \\ Michel Marcus, Aug 17 2016
Comments