cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276076 Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples.

Examples

			   n  A007623   polynomial     encoded as             a(n)
   -------------------------------------------------------
   0       0    0-polynomial   (empty product)        = 1
   1       1    1*x^0          prime(1)^1             = 2
   2      10    1*x^1          prime(2)^1             = 3
   3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6
   4      20    2*x^1          prime(2)^2             = 9
   5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18
   6     100    1*x^2          prime(3)^1             = 5
   7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10
and:
  23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)
                                      = 5^3 * 3^2 * 2 = 2250.
		

Crossrefs

Cf. A276075 (a left inverse).
Cf. A276078 (same terms in ascending order).
Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials, and A276086 for a primorial base analog.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)

Formula

a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)).
Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n).
Other identities.
For all n >= 0:
A276075(a(n)) = n.
A001221(a(n)) = A060130(n).
A001222(a(n)) = A034968(n).
A051903(a(n)) = A246359(n).
A048675(a(n)) = A276073(n).
A248663(a(n)) = A276074(n).
a(A007489(n)) = A002110(n).
a(A059590(n)) = A019565(n).
For all n >= 1:
a(A000142(n)) = A000040(n).
a(A033312(n)) = A076954(n-1).
From Antti Karttunen, Apr 18 2022: (Start)
a(n) = A276086(A351576(n)).
A276085(a(n)) = A351576(n)
A003557(a(n)) = A351577(n).
A003415(a(n)) = A351950(n).
A069359(a(n)) = A351951(n).
A083345(a(n)) = A342001(a(n)) = A351952(n).
A351945(a(n)) = A351954(n).
A181819(a(n)) = A275735(n).
(End)
lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - Antti Karttunen and Peter Munn, Aug 09 2024

Extensions

Name changed by Antti Karttunen, Apr 18 2022

A309064 Langton's ant on a snub square tiling: number of black cells after n moves of the ant when starting on a square.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 16, 17, 18, 17, 16, 15, 16, 17, 18, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22
Offset: 0

Views

Author

Felix Fröhlich, Jul 10 2019

Keywords

Comments

First differs from A276073 at n = 16.
On a white square, turn 90 degrees right, flip the color of the tile, then move forward one unit.
On a white triangle, turn 60 degrees right, flip the color of the tile, then move forward one unit.
On a black square, turn 90 degrees left, flip the color of the tile, then move forward one unit.
On a black triangle, turn 60 degrees left, flip the color of the tile, then move forward one unit.

Examples

			See illustrations in Fröhlich, 2019.
		

Crossrefs

Formula

a(n+1025) = a(n) + 25 for n > 96420. Lars Blomberg, Aug 15 2019

A276074 A276076-polynomials evaluated at X=2 over the field GF(2): a(n) = A248663(A276076(n)).

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 8, 9, 10, 11, 8, 9, 12, 13, 14, 15, 12, 13, 0, 1, 2, 3, 0, 1, 4, 5, 6, 7, 4, 5, 0, 1, 2, 3, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Crossrefs

Cf. also A276073, A275808

Programs

Formula

a(n) = A248663(A276076(n)).

A325631 Langton's ant on an elongated triangular tiling: number of black cells after n moves of the ant when starting on a square and initially looking towards one of the edges where that square meets one of the neighboring triangles.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 14, 13, 14, 15, 16, 15, 16, 17, 16, 15, 16, 17, 18, 17, 16, 15, 16, 17, 18, 19, 20, 19, 18, 19, 20, 19, 20, 21, 22, 23, 24, 23, 22, 23, 22, 23, 22, 21, 20, 19, 18, 19, 18, 17, 18, 19, 20
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2019

Keywords

Comments

First differs from A276073 at n = 22.
On a white square, turn 90 degrees right, flip the color of the tile, then move forward one unit.
On a white triangle, turn 60 degrees right, flip the color of the tile, then move forward one unit.
On a black square, turn 90 degrees left, flip the color of the tile, then move forward one unit.
On a black triangle, turn 60 degrees left, flip the color of the tile, then move forward one unit.

Examples

			See illustrations in Fröhlich, 2019.
		

Crossrefs

Formula

a(n) = a(n-51) + 11 for n >= 1159. - Jinyuan Wang, Jul 15 2025

Extensions

More terms from Jinyuan Wang, Jul 15 2025
Showing 1-4 of 4 results.