A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.
1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0
Examples
For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625. For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..2310
- Antti Karttunen, Program in LODA-assembly
- Antti Karttunen, Program in LODA-assembly [Cached copy]
- Index entries for sequences related to primorial base
Crossrefs
Cf. A000040, A001221, A001222, A002110, A020639, A049345, A053669, A055396, A057588, A071178, A143293, A257993, A267263, A276084, A276088, A276092, A276093, A276147, A276150, A276151, A276153, A276156, A283477, A324198 (= gcd(n, a(n))), A328584 (= lcm(n, a(n))), A324646, A324289, A328386, A328403, A328475, A328571, A328572, A328578, A328612, A328613, A328620, A328624, A328627, A328763, A328766, A328828, A328835, A328841, A328842, A328843, A328844, A329041, A324580 [= n*a(n)], A324895 (largest proper divisor of a(n)), A351252, A353486 (reduced modulo 4), A358840 (modulo 6), A353489, A353516.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Programs
-
Mathematica
b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *) f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *) a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
-
PARI
A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
-
PARI
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
-
Python
from sympy import prime def a(n): i=0 m=pr=1 while n>0: i+=1 N=prime(i)*pr if n%N!=0: m*=(prime(i)**((n%N)/pr)) n-=n%N pr=N return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
-
Python
from sympy import nextprime def a(n): m, p = 1, 2 while n > 0: n, r = divmod(n, p) m *= p**r p = nextprime(p) return m print([a(n) for n in range(74)]) # Peter Luschny, Apr 20 2024
-
Sage
def A276086(n): m=1 i=1 while n>0: p = sloane.A000040(i) m *= (p**(n%p)) n = floor(n/p) i += 1 return (m) # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
-
Scheme
(define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
-
Scheme
(definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
-
Scheme
(definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
Formula
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
Various number theoretical functions applied:
Other identities:
a(n) mod n = A328386(n).
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022
Extensions
Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022
Comments