cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 641 results. Next

A327860 Arithmetic derivative of the primorial base exp-function: a(n) = A003415(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 6, 21, 1, 7, 8, 31, 39, 123, 10, 45, 55, 185, 240, 705, 75, 275, 350, 1075, 1425, 3975, 500, 1625, 2125, 6125, 8250, 22125, 1, 9, 10, 41, 51, 165, 12, 59, 71, 247, 318, 951, 95, 365, 460, 1445, 1905, 5385, 650, 2175, 2825, 8275, 11100, 30075, 4125, 12625, 16750, 46625, 63375, 166125, 14, 77, 91, 329, 420
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Are there any other fixed points after 0, 1, 7, 8 and 2556? (A328110, see also A351087 and A351088).
Out of the 30030 initial terms, 19220 are multiples of 5. (See A327865).
Proof that a(n) is even if and only if n is a multiple of 4: Consider Charlie Neder's Feb 25 2019 comment in A235992. As A276086 is never a multiple of 4, and as it toggles the parity, we only need to know when A001222(A276086(n)) = A276150(n) is even. The condition for that is given in the latter sequence by David A. Corneth's Feb 27 2019 comment. From this it also follows that A166486 gives similarly the parity of terms of A342002, A351083 and A345000. See also comment in A327858. - Antti Karttunen, May 01 2022

Examples

			2556 has primorial base expansion [1,1,1,1,0,0] as 1*A002110(5) + 1*A002110(4) + 1*A002110(3) + 1*A002110(2) = 2310 + 210 + 30 + 6 = 2556. That in turn is converted by A276086 to 13^1 * 11^1 * 7^1 * 5^1 = 5005, whose arithmetic derivative is 5' * 1001 + 1001' * 5 = 1*1001 + 311*5 = 2556, thus 2556 is one of the rare fixed points (A328110) of this sequence.
		

Crossrefs

Cf. A002110 (positions of 1's), A003415, A048103, A276086, A327858, A327859, A327865, A328110 (fixed points), A328233 (positions of primes), A328242 (positions of squarefree terms), A328388, A328392, A328571, A328572, A329031, A329032, A329041, A342002.
Cf. A345000, A351074, A351075, A351076, A351077, A351080, A351083, A351084, A351087 (numbers k such that a(k) is a multiple of k), A351088.
Coincides with A329029 on positions given by A276156.
Cf. A166486 (a(n) mod 2), A353630 (a(n) mod 4).
Cf. A267263, A276150, A324650, A324653, A324655 for omega, bigomega, phi, sigma and tau applied to A276086(n).
Cf. also A351950 (analogous sequence).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Function[k, If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ k, Reverse@ k}]]@ IntegerDigits[#, b] &, 65, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327860(n) = A003415(A276086(n));
    
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ (Standalone version) - Antti Karttunen, Nov 07 2019

Formula

a(n) = A003415(A276086(n)).
a(A002110(n)) = 1 for all n >= 0.
From Antti Karttunen, Nov 03 2019: (Start)
Whenever A329041(x,y) = 1, a(x + y) = A003415(A276086(x)*A276086(y)) = a(x)*A276086(y) + a(y)*A276086(x). For example, we have:
a(n) = a(A328841(n)+A328842(n)) = A329031(n)*A328572(n) + A329032(n)*A328571(n).
A051903(a(n)) = A328391(n).
A328114(a(n)) = A328392(n).
(End)
From Antti Karttunen, May 01 2022: (Start)
a(n) = A328572(n) * A342002(n).
For all n >= 0, A000035(a(n)) = A166486(n). [See comments]
(End)

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A324198 a(n) = gcd(n, A276086(n)), where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 25, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 7, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 75, 1, 7, 1, 1, 5, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Feb 25 2019

Keywords

Crossrefs

Cf. A324583 (positions of ones), A324584 (and terms larger than one).
Cf. A371098 (odd bisection), A371099 [= a(36n+9)].
Cf. also A328231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, m]] &, 106, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    
  • PARI
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p,valuation(orgn,p))); n = n\p; p = nextprime(1+p)); (m); }; \\ Antti Karttunen, Oct 21 2019

Formula

a(n) = gcd(n, A276086(n)).
From Antti Karttunen, Oct 21 2019: (Start)
A000005(a(n)) = A327168(n).
a(A328316(n)) = A328323(n).
a(n) = A324580(n) / A328584(n).
(End)

A324886 a(n) = A276086(A108951(n)).

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 11, 15, 35, 49, 13, 625, 17, 121, 117649, 225, 19, 1225, 23, 2401, 1771561, 169, 29, 875, 717409, 289, 55, 14641, 31, 184877, 37, 21, 4826809, 361, 36226650889, 1500625, 41, 529, 24137569, 77, 43, 143, 47, 28561, 1127357, 841, 53, 1715, 902613283, 514675673281, 47045881, 83521, 59, 3025, 8254129, 214358881, 148035889, 961, 61
Offset: 1

Views

Author

Antti Karttunen, Mar 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 120]}, Array[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]], b] &, 58]] (* Michael De Vlieger, Nov 18 2019 *)
    A276086[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    (* b is A108951 *)
    b[n_] := b[n] = Module[{pe = FactorInteger[n], p, e}, If[Length[pe] > 1, Times @@ b /@ Power @@@ pe, {{p, e}} = pe; Times @@ (Prime[Range[ PrimePi[p]]]^e)]]; b[1] = 1;
    a[n_] := A276086[b[n]];
    Array[a, 100] (* Jean-François Alcover, Dec 01 2021, after _Antti Karttunen in A296086 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324886(n) = A276086(A108951(n));

Formula

a(n) = A276086(A108951(n)).
a(n) = A117366(n) * A324896(n).
A001222(a(n)) = A324888(n).
A020639(a(n)) = A117366(n).
A032742(a(n)) = A324896(n).
a(A000040(n)) = A000040(1+n).
From Antti Karttunen, Jul 09 2021: (Start)
For n > 1, a(n) = A003961(A329044(n)).
a(n) = A346091(n) * A344592(n).
a(n) = A346106(n) / A346107(n).
A003415(a(n)) = A329047(n).
A003557(a(n)) = A344592(n).
A342001(a(n)) = A342920(n) = A329047(n) / A344592(n).
(End)

A342002 Čiurlionis sequence: Arithmetic derivative without its inherited divisor applied to the primorial base exp-function: a(n) = A342001(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 2, 7, 1, 7, 8, 31, 13, 41, 2, 9, 11, 37, 16, 47, 3, 11, 14, 43, 19, 53, 4, 13, 17, 49, 22, 59, 1, 9, 10, 41, 17, 55, 12, 59, 71, 247, 106, 317, 19, 73, 92, 289, 127, 359, 26, 87, 113, 331, 148, 401, 33, 101, 134, 373, 169, 443, 2, 11, 13, 47, 20, 61, 17, 69, 86, 277, 121, 347, 24, 83, 107, 319, 142, 389, 31
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

The scatter plot shows an interesting structure.
The terms are essentially the "wild" or "unherited" part of the arithmetic derivative (A003415) of those natural numbers (A048103) that are not immediately beyond all hope of reaching zero by iteration (as the terms of A100716 are), ordered by the primorial base expansion of n as in A276086. Sequence A342018 shows the positions of the terms here that have just moved to the "no hope" region, while A342019 shows how many prime powers in any term have breached the p^p limit. Note that the results are same as for A327860(n), as the division by "regular part", A328572(n) does not affect the "wild part" of the arithmetic derivative of A276086(n). - Antti Karttunen, Mar 12 2021
I decided to name this sequence in honor of Lithuanian artist Mikalojus Čiurlionis, 1875 - 1911, as the scatter plot of this sequence reminds me thematically of his work "Pyramid sonata", with similar elements: fractal repetition in different scales and high tension present, discharging as lightning. Like Čiurlionis's paintings, this sequence has many variations, see the Formula and Crossrefs sections. - Antti Karttunen, Apr 30 2022

Crossrefs

Cf. A342463 [= a(A329886(n))], A342920 [= a(A108951(n))], A342921 [= a(A276156(n))], A342017 [= A342007(a(n))], A342019 [= A129251(a(n))].
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860), A353640 (a(n) mod 4).
Cf. A344760, A344761, A344762, A346252, A346253 and A345930, A353572, A353574 for permuted and other variants.
Cf. A351952 (similar definition, but using factorial base, with quite a different look).

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A342002(n) = A342001(A276086(n)); \\ Uses also code from A342001.
    
  • PARI
    A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); }; \\ Antti Karttunen, Mar 12 2021
    
  • PARI
    A342002(n) = { my(s=0, p=2, e); while(n, e = (n%p); s += (e/p); n = n\p; p = nextprime(1+p)); numerator(s); }; \\ (Taking denominator instead would give A328571) - Antti Karttunen, Mar 12 2021

Formula

a(n) = A342001(A276086(n)) = A083345(A276086(n)).
a(n) = A327860(n) / A328572(n) = A003415(A276086(n)) / A003557(A276086(n)).
From Antti Karttunen, Jul 18 2021: (Start)
There are several permutations of this sequence. The following formulas show the relations:
a(n) = A344760(A289234(n)).
a(n) = A346252(A328623(n)) = A346253(A328622(n)).
a(n) = A344761(A328626(n)) = A344762(A328625(n)).
(End)

Extensions

Sequence renamed as "Čiurlionis sequence" to honor Lithuanian artist Mikalojus Čiurlionis - Antti Karttunen, Apr 30 2022

A327858 Greatest common divisor of the arithmetic derivative and the primorial base exp-function: a(n) = gcd(A003415(n), A276086(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 5, 1, 3, 6, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 10, 15, 3, 1, 1, 1, 1, 1, 14, 1, 6, 5, 1, 21, 2, 1, 1, 1, 1, 3, 3, 25, 1, 7, 14, 15, 10, 7, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 3, 3, 18, 1, 1, 3, 2, 1, 1, 1, 1, 3, 5, 5, 18, 1, 1, 1, 6, 1, 1, 1, 2, 15, 2, 35, 1, 1, 2, 3, 2, 49, 6, 1, 1, 7, 15, 35, 1, 7, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Proof that A046337 gives the positions of even terms: see Charlie Neder's Feb 25 2019 comment in A235992 and recall that A276086 is never a multiple of 4, as it is a permutation of A048103, and furthermore it toggles the parity. See also comment in A327860. - Antti Karttunen, May 01 2022

Crossrefs

Cf. A046337 (positions of even terms), A356311 (positions of 1's), A356310 (their characteristic function).
Cf. also A085731, A324198, A328572 [= gcd(A276086(n), A327860(n))], A345000, A373145, A373843.

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12], f, g}, f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; g[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[GCD[f@ #, g@ #] &, 105]] (* Michael De Vlieger, Sep 30 2019 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));

Formula

a(n) = gcd(A003415(n), A276086(n)).
a(p) = 1 for all primes p.
a(n) = A276086(A351234(n)). - Antti Karttunen, May 01 2022
From Antti Karttunen, Dec 05 2022: (Start)
For n >= 2, a(n) = gcd(A003415(n), A328382(n)).
(End)
For n >= 2, a(n) = A358669(n) / A359423(n). For n >= 1, A356299(n) | a(n). - Antti Karttunen, Jan 09 2023
a(n) = gcd(A003415(n), A373849(n)) = gcd(A276086(n), A369971(n)) = A373843(A276086(n)). - Antti Karttunen, Jun 21 & 23 2024

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A328572 Primorial base expansion of n converted into its prime product form, but with 1 subtracted from all nonzero digits: a(n) = A003557(A276086(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 5, 5, 5, 5, 15, 15, 25, 25, 25, 25, 75, 75, 125, 125, 125, 125, 375, 375, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 5, 5, 5, 5, 15, 15, 25, 25, 25, 25, 75, 75, 125, 125, 125, 125, 375, 375, 7, 7, 7, 7, 21, 21, 7, 7, 7, 7, 21, 21, 35, 35, 35, 35, 105, 105, 175, 175, 175, 175, 525, 525, 875, 875, 875, 875
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[#1/(Times @@ #2[[All, 1]]) & @@ {#1, FactorInteger[#]} &[Times @@ Power @@@ #] &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[#, b] &, 87, 0]] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A003557(A276086(n)).
a(n) = A276086(n) / A328571(n).
a(n) = A328475(n) / A328573(n).
For all n >= 1, 1+A051903(a(n)) = A328114(n).
a(n) = A085731(A276086(n)) = gcd(A276086(n), A327860(n)). - Antti Karttunen, Feb 28 2021

A276087 a(n) = A276086(A276086(n)).

Original entry on oeis.org

2, 3, 6, 5, 30, 125, 18, 45, 150, 7, 1050, 343, 1250, 2625, 7350, 16807, 1650, 847, 43218, 3465, 27731550, 3195731, 1183724850, 435930295269007, 17794411250, 7105308412125, 3782866198615350, 2709490941157, 6237907125450, 161696170950365051, 10, 75, 750, 175, 294, 12005, 126, 2205, 51450, 11, 565950, 1331, 21008750, 9904125, 6225450, 161051, 1002614947950, 190333
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12], f}, f[n_] := Times @@ Power @@@ # &@ Transpose@{Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[Nest[f, #, 2] &, 48, 0]] (* Michael De Vlieger, Oct 15 2019 *)
  • Scheme
    (define (A276087 n) (A276086 (A276086 n)))

Formula

a(n) = A276086(A276086(n)).
Other identities. For all n >= 0:
a(A143293(n)) = A000040(2+n).

A327859 a(n) = A276086(A003415(n)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 2, 2, 9, 2, 18, 2, 25, 5, 10, 2, 225, 2, 30, 15, 21, 2, 750, 2, 625, 45, 50, 2, 525, 45, 150, 3750, 21, 2, 14, 2, 18375, 75, 250, 25, 49, 2, 750, 225, 735, 2, 630, 2, 875, 210, 1250, 2, 385875, 75, 1050, 375, 13125, 2, 36750, 225, 1029, 1125, 14, 2, 1029, 2, 42, 5250, 2941225, 125, 98, 2, 1225, 1875, 78750
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Are there fixed points other than 1, 2, 10, 15, 5005? (There are none in the range 5006 .. 402653184.) See A369650.
Records occur at n = 0, 2, 4, 6, 8, 12, 18, 27, 32, 48, 64, 80, 144, 224, 256, 336, 448, 480, 512, 1728, ... (see also A131117).
a(n) and n are never multiples of 9 at the same time, thus the fixed points certainly exclude any terms of A008591. For a proof, consider my comment in A047257 and that A003415(9*n) is always a multiple of 3. - Antti Karttunen, Feb 08 2024

Crossrefs

Cf. A003415, A008591, A048103, A131117, A276086, A327858, A327860, A341517 [= mu(a(n))], A341518 (k where a(k) is squarefree), A369641 (composite k where a(k) is squarefree), A369642.
Cf. A370114 (where a(k) is a multiple of k), A370115 (where k is a multiple of a(k)), A369650.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327859(n) = A276086(A003415(n));

Formula

a(n) = A276086(A003415(n)).
a(p) = 2 for all primes p.

A278226 Filter-sequence for primorial base: least number with the same prime signature as A276086(n).

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 2, 6, 6, 30, 12, 60, 4, 12, 12, 60, 36, 180, 8, 24, 24, 120, 72, 360, 16, 48, 48, 240, 144, 720, 2, 6, 6, 30, 12, 60, 6, 30, 30, 210, 60, 420, 12, 60, 60, 420, 180, 1260, 24, 120, 120, 840, 360, 2520, 48, 240, 240, 1680, 720, 5040, 4, 12, 12, 60, 36, 180, 12, 60, 60, 420, 180, 1260, 36, 180, 180, 1260, 900, 6300, 72, 360, 360, 2520, 1800
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain primorial base related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A276086(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero digits (that may also be > 9) in the primorial base representation of n, but does not depend on their order. Some of these are listed on the last line of the Crossrefs section.

Crossrefs

Cf. also A278243.
Similar sequences: A278222 (base-2 related), A069877 (base-10), A278236 (factorial base).
Differs from A278236 for the first time at n=24, where a(24)=16, while A278236(24)=2.
Sequences that partition N into same or coarser equivalence classes: A267263, A276150.

Programs

Formula

a(n) = A046523(A276086(n)).

A327969 The length of a shortest path from n to zero when using the transitions x -> A003415(x) and x -> A276086(x), or -1 if no zero can ever be reached from n.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 3, 2, 6, 4, 3, 2, 5, 2, 5, 6, 6, 2, 5, 2, 7, 4, 3, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2019

Keywords

Comments

The terms of this sequence are currently known only up to n=23, with the value of a(24) still being uncertain. For the tentative values of the later terms, see sequence A328324 which gives upper bounds for these terms, many of which are very likely also exact values for them.
As A051903(A003415(n)) >= A051903(n)-1, it means that it takes always at least A051903(n) steps to a prime if iterating solely with A003415.
Some known values and upper bounds from n=24 onward:
a(24) <= 11.
a(25) = 4.
a(26) = 7.
a(27) <= 22.
a(33) = 4.
a(39) = 4.
a(40) = 5.
a(42) = 3.
a(44) <= 10.
a(45) = 5.
a(46) = 5.
a(48) = 9.
a(49) = 6.
a(50) = 6.
a(55) = 7.
a(74) = 5.
a(77) = 6.
a(80) <= 18.
a(111) = 6.
a(112) = 8.
a(125) <= 9.
a(240) = 7.
a(625) <= 10.
a(875) = 8.
From Antti Karttunen, Feb 20 2022: (Start)
a(2556) <= 20.
a(5005) <= 19.
What is the value of a(128), and is A328324(128) well-defined?
When I created this sequence, I conjectured that by applying two simple arithmetic operations "arithmetic derivative" (A003415) and "primorial base exp-function" (A276086) in some combination, and starting from any positive integer, we could always reach zero (via a prime and 1).
At the first sight it seems almost certain that the conjecture holds, as it is always possible at every step to choose from two options (which very rarely meet, see A351088), leading to an exponentially growing search tree, and also because A276086 always jumps out of any dead-end path with p^p-factors (dead-end from the arithmetic derivative's point of view). However, it should be realized that one can reach the terms of either A157037 or A327978 with a single step of A003415 only from squarefree numbers (or respectively, cubefree numbers that are not multiples of 4, see A328234), and in general, because A003415 decreases the maximal exponent of the prime factorization (A051903) at most by one, if the maximal exponent in the prime factorization of n is large, there is a correspondingly long path to traverse if we take only A003415-steps in the iteration, and any step could always lead with certain probability to a p^p-number. Note that the antiderivatives of primorials with a square factor seem quite rare, see A351029.
And although taking a A276086-step will always land us to a p^p-free number (which a priori is not in the obvious dead-end path of A003415, although of course it might eventually lead to one), it (in most cases) also increases the magnitude of number considerably, that tends to make the escape even harder. Particularly, in the majority of cases A276086 increases the maximal exponent (which in the preimage is A328114, "maximal digit value used when n is written in primorial base"), so there will be even a longer journey down to squarefree numbers when using A003415. See the sequences A351067 and A351071 for the diminishing ratios suggesting rapidly diminishing chances of successfully reaching zero from larger terms of A276086. Also, the asymptotic density of A276156 is zero, even though A351073 may contain a few larger values.
On the other hand, if we could prove that by (for example) continuing upwards with any p^p-path of A003415 we could eventually reach with a near certainty a region of numbers with low values of A328114 (i.e., numbers with smallish digits in primorial base, like A276156), then the situation might change (see also A351089). However, a few empirical runs seemed to indicate otherwise.
For all of the above reasons, I now conjecture that there are natural numbers from which it is not possible to reach zero with any combination of steps. For example 128 or 5^5 = 3125.
(End)

Examples

			Let -A> stand for an application of A003415 and -B> for an application of A276086, then, we have for example:
a(8) = 6 as we have 8 -A>  12 -B>  25 -A> 10 -A>  7 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(15) = 6 as we have 15 -B> 150 -A> 185 -A> 42 -A> 41 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(20) = 7, as 20 -B> 375 -A> 350 -A> 365 -A> 78 -A> 71 -A> 1 -A> 0, and there are no shorter paths.
For n=112, we know that a(112) cannot be larger than eight, as A328099^(8)(112) = 0, so we have a path of length 8 as 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. Checking all 32 combinations of the paths of lengths of 5 starting from 112 shows that none of them or their prefixes ends with a prime, thus there cannot be any shorter path, and indeed a(112) = 8.
a(24) <= 11 as A328099^(11)(24) = 0, i.e., we have 24 -A> 44 -A> 48 -A> 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. On the other hand, 24 -B> 625 -B> 17794411250 -A> 41620434625 -A> 58507928150 -A> 86090357185 -A> 54113940517 -A> 19982203325 -A> 12038411230 -A> 8426887871 -A> 1 -A> 0, thus offering another path of length 11.
		

Crossrefs

Cf. A328324 (a sequence giving upper bounds, computed with restricted search space).
Sequences for whose terms k, value a(k) has a guaranteed constant upper bound: A000040, A002110, A143293, A157037, A192192, A327978, A328232, A328233, A328239, A328240, A328243, A328249, A328313.
Sequences for whose terms k, it is guaranteed that a(k) has finite value > 0, even if not bound by a constant: A099308, A328116.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327969(n,searchlim=0) = if(!n,n,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, print("n=", n, " k=", k, " xs=", xs); newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A003415(u); if(0==a, return(k)); if(isprime(a), return(k+2)); b = A276086(u); if(isprime(b), return(k+1+(u>2))); newxs = setunion([a],newxs); if(!searchlim || (b<=searchlim),newxs = setunion([b],newxs))); xs = newxs));

Formula

a(0) = 0, a(p^p) = 1 + a(A276086(p^p)) for primes p, and for other numbers, a(n) = 1+min(a(A003415(n)), a(A276086(n))).
a(p) = 2 for all primes p.
For all n, a(n) <= A328324(n).
Let A stand the transition x -> A003415(x), and B stand for x -> A276086(x). The following sequences give some constant upper limits, because it is guaranteed that the combination given in brackets (the leftmost A or B is applied first) will always lead to a prime:
For all n, a(A157037(n)) = 3. [A]
For n > 1, a(A002110(n)) = 3. [B]
For all n, a(A192192(n)) <= 4. [AA]
For all n, a(A327978(n)) = 4. [AB]
For all n, a(A328233(n)) <= 4. [BA]
For all n, a(A143293(n)) <= 4. [BB]
For all n, a(A328239(n)) <= 5. [AAA]
For all n, a(A328240(n)) <= 5. [BAA]
For all n, a(A328243(n)) <= 5. [ABB]
For all n, a(A328313(n)) <= 5. [BBB]
For all n, a(A328249(n)) <= 6. [BAAA]
For all k in A046099, a(k) >= 4, and if A328114(k) > 1, then certainly a(k) > 4.
Showing 1-10 of 641 results. Next