cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A328324 An upper bound sequence for A327969, using the primorial number A002110(37) as a cut point limit when pruning A276086-branches from the search tree.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 3, 2, 6, 4, 3, 2, 5, 2, 5, 6, 6, 2, 5, 2, 7, 4, 3, 2, 11, 4, 7, 22, 6, 2, 3, 2, 5, 4, 3, 5, 6, 2, 4, 4, 5, 2, 3, 2, 10, 5, 5, 2, 9, 6, 6, 8, 17, 2, 11, 7, 16, 4, 3, 2, 7, 2, 5, 9, 7, 5, 3, 2, 5, 8, 3, 2, 7, 2, 5, 8, 5, 6, 3, 2, 18, 10, 3, 2, 9, 4, 6, 6, 21, 2, 9, 6, 15, 4, 7, 12, 14, 2, 6, 9, 21, 2, 7, 2, 6, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 14 2019

Keywords

Comments

If in the search tree (whose root is n) where the transitions x -> A003415(x) and x -> A276086(x) expand the tree at every point to two branches, the latter transition yields a number larger than A002110(37), that number (and the whole subtree whose root it is) will then be pruned from the tree, which entails that the procedure could miss shorter paths to zero than what it will find later from the other branches of the tree. Thus for all n, this sequence gives the guaranteed upper bound for the terms of A327969.
Note that A002110(37) = 35375166993717494840635767087951744212057570647889977422429870 is a 205-bit integer.

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327969(n,searchlim=0) = if(!n,n,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A003415(u); if(0==a, return(k)); if(isprime(a), return(k+2)); b = A276086(u); if(isprime(b), return(k+1+(u>2))); newxs = setunion([a],newxs); if(!searchlim || (b<=searchlim),newxs = setunion([b],newxs))); xs = newxs));
    A002110(n) = prod(i=1,n,prime(i));
    A328324(n) = A327969(n,A002110(37));

Formula

a(n) >= A327969(n) for all n.

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A328114 Maximal digit value used when n is written in primorial base (cf. A049345).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 12 2019

Keywords

Examples

			For n = 2105, which could be expressed in primorial base for example as "T0021" (where T here stands for the digit value ten), or maybe more elegantly as [10,0,0,2,1] as 2105 = 10*A002110(4) + 2*A002110(1) + 1*A002110(0). The maximum value of these digits is 10, thus a(2105) = 10.
		

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 20]}, Array[Max@ IntegerDigits[#, b] &, 105, 0]] (* Michael De Vlieger, Oct 30 2019 *)
  • PARI
    A328114(n) = { my(i=0,m=0,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m = max(m,(n%nextpr)/pr); n-=(n%nextpr));pr=nextpr); (m); };
    
  • PARI
    A328114(n) = { my(s=0, p=2); while(n, s = max(s,(n%p)); n = n\p; p = nextprime(1+p)); (s); }; \\ (Faster, no unnecessary construction of primorials) - Antti Karttunen, Oct 29 2019

Formula

a(n) = A051903(A276086(n)).
a(A276156(n)) = 1 for all n >= 1.
a(n) <= A276150(n) for all n >= 0.
From Antti Karttunen, Oct 29 2019: (Start)
a(n) = A061395(A328835(n)).
For n >= 1, a(n) < A000040(A235224(n)) and a(n) <= 1 + A328391(n).
For all n >= 1, a(n) = 1+A051903(A328572(n)).
a(A276086(n)) = A328389(n), a(A276087(n)) = A328394(n), a(A328403(n)) = A328398(n).
a(A327860(n)) = A328392(n), a(A003415(n)) = A328390(n), a(A328316(n)) = A328322(n).
(End)

A099308 Numbers m whose k-th arithmetic derivative is zero for some k. Complement of A099309.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 29, 30, 31, 33, 34, 37, 38, 41, 42, 43, 46, 47, 49, 53, 57, 58, 59, 61, 62, 65, 66, 67, 70, 71, 73, 77, 78, 79, 82, 83, 85, 89, 93, 94, 97, 98, 101, 103, 105, 107, 109, 113, 114, 118, 121, 126, 127, 129, 130
Offset: 1

Views

Author

T. D. Noe, Oct 12 2004

Keywords

Comments

The first derivative of 0 and 1 is 0. The second derivative of a prime number is 0.
For all n, A003415(a(n)) is also a term of the sequence. A351255 gives the nonzero terms as ordered by their position in A276086. - Antti Karttunen, Feb 14 2022

Examples

			18 is on this list because the first through fifth derivatives are 21, 10, 7, 1, 0.
		

References

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099309 (complement, numbers whose k-th arithmetic derivative is nonzero for all k), A351078 (first noncomposite reached when iterating the derivative from these numbers), A351079 (the largest term on such paths).
Cf. A328308, A328309 (characteristic function and their partial sums), A341999 (1 - charfun).
Cf. A276086, A328116, A351255 (permutation of nonzero terms), A351257, A351259, A351261, A351072 (number of prime(k)-smooth terms > 1).
Cf. also A256750 (number of iterations needed to reach either 0 or a number with a factor of the form p^p), A327969, A351088.
Union of A359544 and A359545.

Programs

  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; nLim=200; lst={1}; i=1; While[i<=Length[lst], currN=lst[[i]]; pre=Intersection[Flatten[Position[d1, currN]], Range[nLim]]; pre=Complement[pre, lst]; lst=Join[lst, pre]; i++ ]; Union[lst]
  • PARI
    \\ The following program would get stuck in nontrivial loops. However, we assume that the conjecture 3 in Ufnarovski & Åhlander paper holds ("The differential equation n^(k) = n has only trivial solutions p^p for primes p").
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    isA099308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n)); \\ Antti Karttunen, Feb 14 2022

Formula

For all n >= 0, A328309(a(n)) = n. - Antti Karttunen, Feb 14 2022

A157037 Numbers with prime arithmetic derivative A003415.

Original entry on oeis.org

6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2009

Keywords

Comments

Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019

Examples

			A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
		

Crossrefs

Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.

Programs

  • Haskell
    a157037 n = a157037_list !! (n-1)
    a157037_list = filter ((== 1) . a010051' . a003415) [1..]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, factorint
    def A157037_gen(): # generator of terms
        return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), count(2))
    A157037_list = list(islice(A157037_gen(),20)) # Chai Wah Wu, Jun 23 2022

Formula

A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019

A256750 Start with n, and repeatedly apply the arithmetic derivative A003415. |a(n)| = the number of iterations to reach 0 (then a(n) is taken nonnegative) or a number having a factor of the form p^p with prime p, in which case a(n) = -|a(n)|.

Original entry on oeis.org

0, 1, 2, 2, 0, 2, 3, 2, 0, 4, 3, 2, 0, 2, 5, -1, 0, 2, 5, 2, 0, 4, 3, 2, 0, 4, -2, 0, 0, 2, 3, 2, 0, 6, 3, -1, 0, 2, 5, -1, 0, 2, 3, 2, 0, -2, 5, 2, 0, 6, -3, -1, 0, 2, 0, -1, 0, 4, 3, 2, 0, 2, 7, -2, 0, 6, 3, 2, 0, -3, 3, 2, 0, 2, -2, -2, 0, 6, 3, 2, 0, 0, 3, 2, 0, 4, -3, -1, 0, 2, -2, -1, 0, 4, 7, -1, 0, 2, 7, -3
Offset: 0

Views

Author

M. F. Hasler, Apr 09 2015

Keywords

Comments

Under iterations of the arithmetic derivative, the orbit of some numbers ends in zero, and the orbit of all others (I conjecture) reaches a number of the form m*p^p with prime p, from where on it keeps this form and grows to infinity iff m>1, or remains at this fixed point if m=1.
This is an extension of the sequence A099307 which counts the steps to reach 0 or yields 0 if this never happens.

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099308 (numbers whose k-th arithmetic derivative is zero for some k, positions of terms > 0 after the initial 0), A099309 (numbers whose k-th arithmetic derivative is nonzero for all k, positions of terms <= 0 after the initial 0), A359547 (positions of negative terms), A327934 (positions of -1's).
Cf. also A327966, A327969 (A328324).

Programs

  • Mathematica
    w = {}; nn = 2^16; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[n]]]{0, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[2], MemberQ[w, n], Sow[0], True, Sow@ If[#[[-1]] == 0, Length[#] - 1, -Length[#] + 1] &[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1]]], {n, 2, nn}] ][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
  • PARI
    a(n,c=0)={n&&until(!n=factorback(n~)*sum(i=1,#n,n[2,i]/n[1,i]),for(i=1,#n=factor(n)~,n[1,i]>n[2,i]||return(-c));c++);c}

Formula

a(n) = 0 <=> n = 0 or n = m*p^p for some prime p and some m >= 1 (which is a fixed point iff m = 1).
a(n) = 1 <=> n = 1.
a(n) = 2 <=> n is prime.
a(n) <= 0 <=> n is in A099309 U {0}. If n > 0, the iterations of A003415 applied to n end in a nonzero fixed point or grow to infinity.
a(n) > 0 <=> n is in A099308 \ {0}.
A099307(n) = min { 0, a(n) }.

A327978 Numbers whose arithmetic derivative (A003415) is a primorial number (A002110) > 1.

Original entry on oeis.org

9, 161, 209, 221, 2189, 2561, 3281, 3629, 5249, 5549, 6401, 7181, 7661, 8321, 8909, 9089, 9869, 10001, 10349, 10541, 10961, 11009, 11021, 29861, 38981, 52601, 66149, 84101, 93029, 97481, 132809, 150281, 158969, 163301, 197669, 214661, 227321, 235721, 285449, 321989, 338021, 357881, 369701, 381449, 385349, 416261, 420089, 442889
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2019

Keywords

Comments

Numbers n such that A327859(n) = A276086(A003415(n)) is an odd prime.
Composite terms in A328232.
Although it first might seem that the numbers whose arithmetic derivative is A002110(k) all appear before any of those whose arithmetic derivative is A002110(k+1), that is not true, as for example, we have a(56) = 570149, and A003415(570149) = 2310, a(57) = 570209, and A003415(570209) = 30030, but then a(58) = 573641 with A003415(573641) = 2310 again.
Because this is a subsequence of A327862 (all primorials > 1 are of the form 4k+2), only odd numbers are present.
Conjecture: No multiples of 5 occur in this sequence, and no multiples of 3 after the initial 9.
Of the first 10000 terms, all others are semiprimes (with 9 the only square one), except 1547371 = 7^2 * 23 * 1373 and 79332523 = 17^2 * 277 * 991, the latter being the only known term whose decimal expansion ends with 3. If all solutions were semiprimes p*q such that p+q = A002110(k) for some k > 1 (see A002375), it would be a sufficient reason for the above conjecture to hold. - David A. Corneth and Antti Karttunen, Oct 11 2019
In any case, the solutions have to be of the form "odd numbers with an even number of prime factors with multiplicity" (see A235992), and terms must also be cubefree (A004709), as otherwise the arithmetic derivative would not be squarefree.
Sequence A366890 gives the non-Goldbachian solutions, i.e., numbers that are not semiprimes. See also A368702. - Antti Karttunen, Jan 17 2024

Crossrefs

Cf. A351029 (number of k for which k' = A002110(n)).
Cf. A368703, A368704 (the least and the greatest k for which k' = A002110(n)).
Cf. A366890 (terms that are not semiprimes), A368702 (numbers k such that k' is one of the terms of this sequence).
Subsequence of following sequences: A004709, A189553, A327862, A328232, A328234.

Programs

  • Mathematica
    ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); primQ[n_] := Max[(f = FactorInteger[n])[[;;,2]]] == 1 && PrimePi[f[[-1,1]]] == Length[f]; Select[Range[10^4], primQ[ad[#]] &] (* Amiram Eldar, Oct 11 2019 *)
  • PARI
    A002620(n) = ((n^2)>>2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
    isA327978flat(n) = { my(u=A003415(n)); ((u>1)&&(1==A276150(u))); }; \\ Slow!
    k=0; for(n=1,A002620(30030),if(isA327978flat(n), k++; write("b327978.txt", k, " ", n)));

Formula

A327969(a(n)) = 4 for all n.

A328391 Maximal exponent in the prime factorization of A327860(n): a(n) = A051903(A327860(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 3, 1, 1, 1, 1, 2, 1, 1, 4, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 7, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A328391(n) = A051903(A327860(n));

Formula

a(A002110(n)) = 0 for all n >= 0.
For all n >= 1, a(n) >= A328114(n)-1. [Because arithmetic derivative will decrease the maximal prime exponent (A051903) of its argument by at most one]

A328116 Numbers n such that the k-th arithmetic derivative of A276086(n) is zero for some k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 20, 21, 28, 30, 31, 32, 33, 35, 37, 38, 40, 43, 46, 47, 49, 50, 60, 61, 65, 67, 68, 71, 73, 74, 76, 79, 84, 85, 87, 91, 97, 98, 104, 106, 112, 118, 119, 121, 129, 133, 134, 151, 153, 180, 183, 196, 207, 210, 211, 212, 213, 218, 220, 221, 223, 225, 226, 227, 228, 229, 231, 235, 239, 240
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2019

Keywords

Comments

Numbers x such that A276086(x) [which is A351255(a(x))] is in A099308.

Crossrefs

Cf. A002110 (subsequence), A003415, A099308, A276086, A327969, A328306 (characteristic function), A328307 (its partial sums).
Cf. A351255 [= A276086(a(n))], A351256 [= A328114(a(n))].

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    isA099308(n) = { while(n>1, n = A003415checked(n)); (n); };
    isA328116(n) = isA099308(A276086(n));

Formula

For all n >= 1, A328307(a(n)) = n.

A192192 Numbers whose second arithmetic derivative (A068346) is prime; Polynomial-like numbers of degree 3.

Original entry on oeis.org

9, 21, 25, 57, 85, 93, 121, 126, 145, 161, 185, 201, 206, 209, 221, 237, 242, 253, 265, 289, 305, 315, 326, 333, 341, 365, 369, 377, 381, 413, 417, 437, 453, 458, 490, 495, 497, 517, 537, 542, 545, 565, 566, 575, 578, 597, 605, 633, 637, 638, 649, 666, 685
Offset: 1

Views

Author

Vladimir Shevelev, Jun 25 2011

Keywords

Comments

The fourth A003415-iteration of a(n) is the first to be 0.

Crossrefs

Cf. A157037, A328239 (the first and third derivative is prime).
Subsequence of following sequences: A328234, A328244, A328246.

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[1000], dn[dn[dn[#]]] == 1&] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA192192(n) = isprime(A003415(A003415(n))); \\ Antti Karttunen, Oct 19 2019

Formula

For all n, A327969(a(n)) <= 4. - Antti Karttunen, Oct 19 2019

Extensions

More terms from Olivier Gérard, Jul 04 2011
New primary definition added to the name by Antti Karttunen, Oct 19 2019
Showing 1-10 of 25 results. Next