cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276097 A nonlinear recurrence of order 5: a(1)=a(2)=a(3)=a(4)=a(5)=1; a(n)=(a(n-1)+a(n-2)+a(n-3)+a(n-4))^2/a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 361, 143641, 20741472361, 430214650013601071641, 11567790319010747187536221088708755344001, 370675271093071368960746074163948008803845834307486807769098691609909105887376
Offset: 1

Views

Author

Seiichi Manyama, Aug 18 2016

Keywords

Comments

All terms are perfect squares.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == 1, a[n] == (a[n-1] + a[n-2] + a[n-3] + a[n-4])^2 / a[n-5]}, a, {n, 15}] (* Vincenzo Librandi, Aug 21 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n
        i = a[1..-1].inject(:+)
        j = i * i
        break if j % a[0] > 0
        a = *a[1..-1], j / a[0]
        ary << a[0]
      end
      ary
    end
    def A276097(n)
      A(5, n)
    end

Formula

a(n) = A072879(n)^2.
a(n) = 25*a(n-1)*a(n-2)*a(n-3)*a(n-4) - 2a(n-1) - 2a(n-2) - 2a(n-3) - 2a(n-4) - a(n-5).
a(n)*a(n-1)*a(n-2)*a(n-3)*a(n-4) = ((a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4))/5)^2.