A276176 Consider the race between primes, semiprimes, 3-almost primes, ... k-almost primes; sequence indicates when one overtakes another to give a new race leader.
2, 26, 31, 34, 15526, 151165506068, 151165506073, 151165506089, 151165506093, 151165506295, 151165506410, 151165506518, 151165506526, 151165506658, 151165506665, 151165506711, 151165506819, 151165506970, 151165506994, 151165507256, 151165507259, 151165507265
Offset: 1
Examples
a(1) = 2 since beginning with the natural numbers (A000027) the race is even with no group in the lead. But at 2, we encounter our first member (1 is unity and is not a member of any group here) which is a prime and therefore the primes take the lead with 2. a(2) = 34 which is a semiprime. pi_1(34) = 11 and pi_2(34) = 12. This is the first time that the semiprimes overtake the primes.
References
- Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, or Chelsea Publishing, NY 1953, or Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York 1974.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..170
- Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, page 211, (4); University of Michigan Historical Math Collection.
Programs
-
Mathematica
k = 1; lst = {}; tf = 0; p1 = 0; p2 = 0; While[k < 100001, If[PrimeOmega@k == 1, p1++]; If[PrimeOmega@k == 2, p2++]; If[p1 > p2 && tf == 0, tf++; AppendTo[lst, k]]; If[p2 > p1 && tf == 1, tf--; AppendTo[lst, k]]; k++]; lst (* cross check using *) AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *) (* as an example *) AlmostPrimePi[2, 15526] => 3986 whereas AlmostPrimePi[3, 15526] => 3987.
Formula
It seems plausible that 0.8 * log(A284411(m) - 1) <= log(a(n)) <= log(A284411(m)) in the instances where the overtaking concerns m-almost-primes and (m-1)-almost-primes. - Peter Munn, Aug 03 2023
Extensions
a(6)-a(22) from Giovanni Resta, Aug 17 2018
Name clarified by Peter Munn, Dec 31 2022
Comments