A276181 Fricke's 37 cases for two-valued modular equations.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59, 71
Offset: 1
Links
- Harvey Cohn, Fricke's Two-Valued Modular Equations, Math. Comp. 51 (1988), 787-807.
Programs
-
PARI
A000003(n) = qfbclassno(-4*n); A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k, 1]+1)), h = prod(k=1, fsz, f[k, 1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); }; A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; A276183(n) = { my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3)); if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12); }; select(x->(x>1), Vec(select(x->x==0, vector(100, n, A276183(n)), 1)))
Formula
Numbers n>1 such that 0 = A276183(n).