cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276183 Genus of the quotient of the modular curve X_0(n) by the Fricke involution.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 2, 3, 0, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 4, 0, 2, 2, 2, 1, 3, 2, 5, 1, 2, 1, 4, 1, 4, 3, 3, 2, 4, 1, 4, 2, 4, 4, 4, 1, 3, 3, 2, 3, 3, 1, 7
Offset: 1

Views

Author

Gheorghe Coserea, Oct 21 2016

Keywords

Comments

a(n) is the genus of quotient space H/Gamma_0*(n), where H is the upper half plane and Gamma_0*(n) = Gamma_0(n) + W Gamma_0(n) is the extension of Gamma_0(n) via the involution z <-> W(z) = -n/z (see Cohn, 1988).

Examples

			G.f. = x^22 + x^28 + x^30 + x^33 + x^34 + x^37 + x^38 + x^40 + 2*x^42 + x^43 + x^44 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, ?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, ?IntegerQ]/4];
    g[n_] := Ceiling[k0 = k /. FindRoot[EllipticK[1 - k^2]/EllipticK[k^2] == Sqrt@ n, {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2];
    r[n_] := If[MemberQ[{3, 7}, #], 3 + (# - 1)/2, 3] &@ Mod[n, 8]; a[n_] := If[n <= 4, 0, (1 + f@ n)/2 - r[n] g[n]/12]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 102}] (* Michael De Vlieger, Oct 28 2016, after Michael Somos at A001617 and Jean-François Alcover at A000003 *)
    ClassList[n_?Negative] :=
    Select[Flatten[#, 1] &@Table[
        {i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],
      Mod[#3, 1] == 0 && #3 >= # &&
          GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]
    A001617[n_] := If[n < 1, 0,
      1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
         Divisors@n}] -
       Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
       Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
    a[n_] := If[0 <= n <= 4, 0, (A001617[n] + 1)/2 - If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]] Length[ClassList[-4 n]]/12] (* David Jao, Sep 07 2020 *)
  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    a(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);
    };
    vector(102, n, a(n))

Formula

a(n) = (1 + A001617(n))/2 - r * A000003(n)/12 for all n > 4, where r=4 for n=3 (mod 8), r=6 for n=7 (mod 8) and r=3 otherwise.
a(n) <> 4884 for all n.

Extensions

New name from David Jao, Sep 07 2020
Showing 1-1 of 1 results.