A276186 Numbers n such that A276183(n) = 3.
58, 60, 66, 76, 85, 86, 96, 97, 99, 100, 104, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239
Offset: 1
Links
- Harvey Cohn, Fricke's Two-Valued Modular Equations, Math. Comp. 51 (1988), 787-807.
Crossrefs
Cf. A276183.
Programs
-
PARI
A000003(n) = qfbclassno(-4*n); A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k, 1]+1)), h = prod(k=1, fsz, f[k, 1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); }; A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; A276183(n) = { my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3)); if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12); }; Vec(select(x->x==3, vector(500, n, A276183(n)), 1))