cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276233 a(n) = (n+256)/gcd(n,256).

Original entry on oeis.org

257, 129, 259, 65, 261, 131, 263, 33, 265, 133, 267, 67, 269, 135, 271, 17, 273, 137, 275, 69, 277, 139, 279, 35, 281, 141, 283, 71, 285, 143, 287, 9, 289, 145, 291, 73, 293, 147, 295, 37, 297, 149, 299, 75, 301, 151, 303, 19, 305, 153
Offset: 1

Views

Author

Artur Jasinski, Aug 24 2016

Keywords

Crossrefs

Cf. A276234 (denominators).

Programs

  • Maple
    seq((n+256)/igcd(n,256),n=1..300); # Robert Israel, Aug 25 2016
  • Mathematica
    Numerator[Table[Limit[EllipticTheta[3, 0, b]^8 + EllipticTheta[2, 0,Sqrt[b]]^8/(n b),b -> 0], {n, 1, 50}]]
    Table[(n + 256)/GCD[n, 256], {n, 60}] (* Ray Chandler, Aug 03 2023 *)

Formula

a(n) = numerator of 1+256/n, which is the limit of the function EllipticTheta(3, 0, q)^8 + EllipticTheta(2, 0, sqrt(q))^8/(n q) when q -> 0.
a(2k-1) = n + 256 = 2k-1 + 256 = 2k + 255
a(4k-2) = n/2 + 128 = 2k-1 + 128 = 2k + 127
a(8k-4) = n/4 + 64 = 2k-1 + 64 = 2k + 63
a(16k-8) = n/8 + 32 = 2k-1 + 32 = 2k + 31
a(32k-16) = n/16 + 16 = 2k-1 + 16 = 2k + 15
a(64k-32) = n/32 + 8 = 2k-1 + 8 = 2k + 7
a(128k-64) = n/64 + 4 = 2k-1 + 4 = 2k + 3
a(256k-128) = n/128 + 2 = 2k-1 + 2 = 2k + 1.
a(n) = 2*a(n-256) - a(n-512) for n > 512. - Ray Chandler, Aug 03 2023