cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276234 a(n) = n/gcd(n, 256).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71
Offset: 1

Views

Author

Artur Jasinski, Aug 24 2016

Keywords

Comments

a(n) first differs from A000265(n) at n = 512. - Andrew Howroyd, Jul 23 2018
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A276233 (numerators), A227140, A000265, A106617.

Programs

Formula

a(2k-1) = 2k-1.
G.f.: (x+x^3)/(1-x^2)^2 +(x^2+x^6)/(1-x^4)^2 +(x^4+x^12)/(1-x^8)^2 +(x^8+x^24)/(1-x^16)^2 +(x^16+x^48)/(1-x^32)^2 +(x^32+x^96)/(1-x^64)^2 +(x^64+x^192)/(1-x^128)^2 +(x^128+x^256+x^384)/(1-x^256)^2. - Robert Israel, Aug 26 2016
a(n) = 2*a(n-256) - a(n-512). - Charles R Greathouse IV, Aug 26 2016
From Peter Bala, Feb 27 2019: (Start)
a(n) = numerator(n/(n + 256)).
O.g.f.: F(x) - Sum_{k = 1..8} F(x^(2^k)), where F(x) = x/(1 - x)^2. Cf. A106617. (End)
From Amiram Eldar, Nov 26 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s) - 1/2^(6*s) - 1/2^(7*s) - 1/2^(8*s)).
Multiplicative with a(2^e) = 2^(e-min(e,8)), and a(p^e) = p^e for p > 2.
Sum_{k=1..n} a(k) ~ (43691/131072) * n^2. (End)

Extensions

Keyword:mult added and terms a(51) and beyond from Andrew Howroyd, Jul 23 2018
Showing 1-1 of 1 results.