cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227140 a(n) = n/gcd(n,2^5), n >= 0.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 65, 33, 67, 17, 69, 35
Offset: 0

Views

Author

Wolfdieter Lang, Jul 04 2013

Keywords

Comments

H(n,4) = 2*n*4/(n+4) is the harmonic mean of n and 4. For n >= 4 the denominator of H(n,4) is (n+4)/gcd(8*n,n+4) = (n+4)/gcd(n+4,32). a(n+8) = A227042(n+4,4), n >= 0. The numerator of H(n,4) is given in A227107. Thus a(n) is related to denominator of the harmonic mean H(n-4, 4).
Note the difference from A000265(n) (odd part of n) = n/gcd(n,2^n), n >= 1, which differs for the first time for n = 64. a(64) = 2, not 1.
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Programs

  • GAP
    List([0..80], n-> n/Gcd(n, 2^5)); # G. C. Greubel, Feb 27 2019
  • Magma
    [n/GCD(n, 2^5): n in [0..80]]; // G. C. Greubel, Feb 27 2019
    
  • Maple
    seq(n/igcd(n,32),n=0..70); # Muniru A Asiru, Feb 28 2019
  • Mathematica
    With[{c=2^5},Table[n/GCD[n,c],{n,0,70}]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    a(n)=n/gcd(n, 2^5); \\ Andrew Howroyd, Jul 23 2018
    
  • Sage
    [n/gcd(n,2^5) for n in (0..80)] # G. C. Greubel, Feb 27 2019
    

Formula

a(n) = n/gcd(n, 2^5).
a(n) = denominator(8*(n-4)/n), n >= 0 (with denominator(infinity) = 0).
From Peter Bala, Feb 27 2019: (Start)
a(n) = numerator(n/(n + 32)).
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - F(x^16) - F(x^32), where F(x) = x/(1 - x)^2. Cf. A106617. (End)
From Bernard Schott, Mar 02 2019: (Start)
a(n) = 1 iff n is 1, 2, 4, 8, 16, 32 and a(2^n) = 2^(n-5) for n >= 5.
a(n) = n iff n is odd (A005408). (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e-min(e,5)), and a(p^e) = p^e for p > 2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s)).
Sum_{k=1..n} a(k) ~ (683/2048) * n^2. (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A276233 a(n) = (n+256)/gcd(n,256).

Original entry on oeis.org

257, 129, 259, 65, 261, 131, 263, 33, 265, 133, 267, 67, 269, 135, 271, 17, 273, 137, 275, 69, 277, 139, 279, 35, 281, 141, 283, 71, 285, 143, 287, 9, 289, 145, 291, 73, 293, 147, 295, 37, 297, 149, 299, 75, 301, 151, 303, 19, 305, 153
Offset: 1

Views

Author

Artur Jasinski, Aug 24 2016

Keywords

Crossrefs

Cf. A276234 (denominators).

Programs

  • Maple
    seq((n+256)/igcd(n,256),n=1..300); # Robert Israel, Aug 25 2016
  • Mathematica
    Numerator[Table[Limit[EllipticTheta[3, 0, b]^8 + EllipticTheta[2, 0,Sqrt[b]]^8/(n b),b -> 0], {n, 1, 50}]]
    Table[(n + 256)/GCD[n, 256], {n, 60}] (* Ray Chandler, Aug 03 2023 *)

Formula

a(n) = numerator of 1+256/n, which is the limit of the function EllipticTheta(3, 0, q)^8 + EllipticTheta(2, 0, sqrt(q))^8/(n q) when q -> 0.
a(2k-1) = n + 256 = 2k-1 + 256 = 2k + 255
a(4k-2) = n/2 + 128 = 2k-1 + 128 = 2k + 127
a(8k-4) = n/4 + 64 = 2k-1 + 64 = 2k + 63
a(16k-8) = n/8 + 32 = 2k-1 + 32 = 2k + 31
a(32k-16) = n/16 + 16 = 2k-1 + 16 = 2k + 15
a(64k-32) = n/32 + 8 = 2k-1 + 8 = 2k + 7
a(128k-64) = n/64 + 4 = 2k-1 + 4 = 2k + 3
a(256k-128) = n/128 + 2 = 2k-1 + 2 = 2k + 1.
a(n) = 2*a(n-256) - a(n-512) for n > 512. - Ray Chandler, Aug 03 2023
Showing 1-2 of 2 results.