cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276258 a(n) = 4*a(n-1)*a(n-2) - a(n-3), with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 3, 11, 131, 5761, 3018753, 69564144001, 839987873581797251, 233732149587751710483796746251, 785328685279672432967483833110876164468741280003, 734226246973363127354668827312570246092792043625372932024478449584047744277761
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 4*a[n - 1]*a[n - 2] - a[n - 3], a[1] == 1,
      a[2] == 1, a[3] == 1}, a, {n, 1, 10}] (* G. C. Greubel, Aug 25 2016 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n
        a = *a[1..-1], *a[1..-1].inject(:*) * (m + 1) - a[0]
        ary << a[0]
      end
      ary
    end
    def A276258(n)
      A(3, n)
    end

Formula

a(1)=a(2)=a(3)=1; a(n)=(a(n-1)^2+a(n-2)^2+1)/a(n-3).
a(n) ~ 1/4 * c^(((1+sqrt(5))/2)^n), where c = 1.41452525081158447693692520473959... . - Vaclav Kotesovec, Aug 26 2016
a(n)*a(n+1)*a(n+2) = (a(n)^2+a(n+1)^2+a(n+2)^2+1)/4. - Seiichi Manyama, Sep 04 2016

A276257 a(1) = a(2) = a(3) = a(4) = 1; for n>4, a(n) = ( a(n-1)+a(n-2)+a(n-3)+1 )^2 / a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 16, 361, 143641, 20741472361, 26888415586959536281, 2002733778095476250641191709976062096, 27923382501685315585533445603599269911720565853675615809277429923281
Offset: 1

Views

Author

Seiichi Manyama, Aug 25 2016

Keywords

Comments

All terms are perfect squares.
The next term (a(12)) has 125 digits. - Harvey P. Dale, Jul 04 2019

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==(a[n-1]+a[n-2]+ a[n-3]+ 1)^2/a[n-4]},a,{n,11}] (* Harvey P. Dale, Jul 04 2019 *)

Formula

a(n) = A276259(n)^2
a(n) = 25*a(n-1)*a(n-2)*a(n-3) - 2*a(n-1) - 2*a(n-2) - 2*a(n-3) - 2 - a(n-4).
a(n)*a(n-1)*a(n-2)*a(n-3) = ((a(n) + a(n-1) + a(n-2) + a(n-3) + 1)/5)^2.
Showing 1-2 of 2 results.