A276417 a(n) = least positive k such that (2*n + 1) - 2^k is prime, or 0 if no such k exists.
0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 4, 1, 2, 4, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 4, 4, 0, 1, 2, 1, 2, 6, 1, 1, 2, 3, 3, 0, 1, 1, 2, 3, 1, 2, 5, 1, 2, 1, 2, 4
Offset: 0
Keywords
Examples
a(14) = 4 because (2*14 + 1) - 2^k is composite for k = 1, 2, 3 and prime for k = 4.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
lst:=[]; for n in [1..173 by 2] do k:=0; c:=k; repeat k+:=1; c+:=1; a:=n-2^k; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, 0); else Append(~lst, c); end if; end for; lst;
-
Maple
f:= proc(n) local k; for k from 1 do if 2*n < 2^k then return 0 elif isprime(2*n+1-2^k) then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Sep 02 2016
-
Mathematica
Table[If[n <= 2, 0, k = 1; While[! PrimeQ[2 n + 1 - 2^k], k++]; k], {n, 0, 120}] (* Michael De Vlieger, Sep 03 2016 *)
-
PARI
a(n) = my(k=1); while(2^k < 2*n+1, if(ispseudoprime((2*n+1)-2^k), return(k)); k++); return(0) \\ Felix Fröhlich, Sep 02 2016
Comments