A276453 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = 1, a(2) = 2, a(3) = 6.
1, 1, 2, 6, 42, 903, 136052, 881442036, 2581196224947732, 342795531574625708871288171, 5732512385084161208637718426682572229606557631, 5754497648510061274107897581706624823818534711463525598519384262130236399970112
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..15
- Math StackExchange, Is A276175 integer-only?
Programs
-
Magma
I:=[1, 1, 2, 6]; [n le 4 select I[n] else (Self(n-1)+1)*(Self(n-2)+1)*(Self(n-3)+1)/Self(n-4): n in [1..13]]; // Vincenzo Librandi, Dec 30 2024
-
Mathematica
RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4], a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 6}, a, {n, 0, 11}] (* Michael De Vlieger, Sep 03 2016 *)
-
Ruby
def A276453(n) a = [1, 1, 2, 6] ary = [1] while ary.size < n + 1 i = a[1..-1].inject(1){|s, i| s * (i + 1)} break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end
Comments