A276455 Primes of the form Sum_{k=1..n} k^(k-1).
3, 701, 45269999
Offset: 1
Examples
3 is in the sequence because 3 is prime and 3 = 2^1 + 1^0. 701 is in the sequence because 701 is prime and 701 = 5^4 + 4^3 + 3^2 + 2^1 + 1^0. 45269999 is in the sequence because 45269999 is prime and 45269999 = 9^8 + 8^7 + 7^6 + 6^5 + 5^4 + 4^3 + 3^2 + 2^1 + 1^0.
Links
- Sebastiao Antonio da Silva, Prime Curios: 9^8 + 8^7 + 7^6 + 6^5 + 5^4 + 4^3 + 3^2 + 2^1 + 1^0 is prime
Crossrefs
Primes in A060946.
Programs
-
Mathematica
Select[Accumulate[Table[n^(n-1),{n,100}]],PrimeQ] (* Harvey P. Dale, Apr 13 2020 *)
-
Sage
sum = 0 seq = [] max_n = 2500 for n in range(1, max_n+1): sum += n^(n-1) if is_prime(sum): seq.append(n) print(seq)
Comments