cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276483 Decimal expansion of Sum_{k>=0} (2*k+1)/binomial(4*k,2*k).

Original entry on oeis.org

1, 5, 7, 9, 7, 6, 8, 3, 7, 9, 5, 5, 4, 0, 2, 0, 7, 7, 5, 2, 4, 2, 9, 9, 7, 8, 5, 9, 1, 2, 3, 4, 4, 4, 8, 6, 0, 6, 2, 7, 8, 9, 5, 5, 3, 5, 7, 6, 6, 4, 9, 5, 0, 5, 5, 2, 0, 7, 1, 8, 1, 8, 5, 4, 0, 1, 6, 9, 2, 3, 7, 9, 2, 9, 8, 4, 0, 7, 3, 6, 3, 6, 7, 5, 8, 6, 0, 3, 4, 4, 4, 9, 6, 4, 2, 3, 6, 1, 3, 7, 1, 1, 4, 9, 7, 4, 5, 3, 9, 6, 1, 6, 7, 0, 3, 2, 1, 3, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Examples

			1.57976837955402077524299785912344486...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2*Pi(R)/(9*Sqrt(3)) - 4*(3*Sqrt(5)*Log((1+Sqrt(5))/2) - 40)/125; // G. C. Greubel, Nov 04 2018
  • Mathematica
    RealDigits[2 (Pi/(9 Sqrt[3])) - 4 ((3 Sqrt[5] Log[GoldenRatio] - 40)/125), 10, 120][[1]]
    RealDigits[HypergeometricPFQ[{1, 1, 3/2}, {1/4, 3/4}, 1/16], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(binomial(4*k,2*k)/(2*k+1))) \\ Michel Marcus, Sep 06 2016
    
  • PARI
    default(realprecision, 100); 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log((1+sqrt(5))/2) - 40)/125 \\ G. C. Greubel, Nov 04 2018
    

Formula

Equals 2*Pi/(9*sqrt(3)) - 4*(3*sqrt(5)*log(phi) - 40)/125, where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/Catalan number(2k).
Equals Sum_{k>=0} 1/A000108(2k).
Equals Sum_{k>=0} 1/A048990(k).