A276487 Denominator of Sum_{k=1..n} 1/k^n.
1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000
Offset: 1
Examples
1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ... a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
Links
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Riemann Zeta Function
- Eric Weisstein's World of Mathematics, Hurwitz Zeta Function
Programs
-
Maple
A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016
-
Mathematica
Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}]
-
PARI
a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016
Comments