A276493 Perfect numbers whose sum of prime factors is prime.
6, 28, 8128, 14474011154664524427946373126085988481573677491474835889066354349131199152128
Offset: 1
Keywords
Examples
a(1) = (2^2-1)*2^(2-1) = 6 because both 2^2-1 = 3 and 2^2+2*2-3 = 5 are primes. a(2) = (2^3-1)*2^(3-1) = 28 because both 2^3-1 = 7 and 2^3+2*3-3 = 11 are primes. a(3) = (2^7-1)*2^(7-1) = 8128 because both 2^7-1 = 127 and 2^7+2*7-3 = 139 are primes.
Crossrefs
Programs
-
Magma
[(2^p-1)*2^(p-1): p in PrimesUpTo(2000) | IsPrime(2^p+2*p-3)];
-
Magma
[(2^n-1)*2^(n-1): n in [1..200] | IsPrime(n) and IsPrime(2^n-1) and IsPrime(2^n+2*n-3)]; // Vincenzo Librandi, Sep 06 2016
-
Maple
A276493:=n->`if`(isprime(n) and isprime(2^n-1) and isprime(2^n+2*n-3), (2^n-1)*2^(n-1), NULL): seq(A276493(n), n=1..10^3); # Wesley Ivan Hurt, Sep 07 2016
-
Mathematica
Select[PerfectNumber[Range[12]],PrimeQ[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[#]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 06 2020 *)
Comments