cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276532 a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5)) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 11, 41, 371, 7507, 429563, 419408854, 9811194604889, 45615501062085527113, 323645006689468299915979814409, 217332607887523478570092794860281557159140687, 8092345737591989154121803868154457767563221634145658745306515944569
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

This sequence is one generalization of Dana Scott's sequence (A048736).
a(n) is an integer for all n.
The recursion exhibits the Laurent phenomenon. See A278706 for the exponents of the denominator of the Laurent polynomial. - Michael Somos, Nov 26 2016

Crossrefs

Programs

  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[2..-2].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276532(n)
      A(7, n)
    end

Formula

a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5).
a(6-n) = a(n) for all n in Z.