cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278706 a(n) = a(n-1) + a(n-3) + a(n-5) - a(n-6), a(0) = a(1) = a(2) = 1, a(3) = 2, a(4) = 3, a(5) = 5.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 16, 24, 36, 54, 81, 123, 185, 278, 419, 631, 951, 1432, 2156, 3248, 4892, 7368, 11097, 16713, 25173, 37914, 57103, 86005, 129535, 195098, 293844, 442568, 666568, 1003942, 1512073, 2277387, 3430053, 5166126, 7780887, 11719071, 17650511
Offset: 0

Views

Author

Michael Somos, Nov 26 2016

Keywords

Comments

If the recursion of A276532 is used to define b(n) = (b(n-1) * b(n-6) + b(n-2) * b(n-3) * b(n-4) * b(n-5)) / b(n-7), with b(0), ..., b(6) variables, then the denominator of b(n) = Product_{k=0..6} b(k)^a(n-k-7) if n>=8.

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 16*x^8 + ...
		

Crossrefs

Cf. A276532.

Programs

  • Magma
    I:=[1,1,1,2,3,5]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-5)-Self(n-6): n in [1..45]]; // Vincenzo Librandi, Nov 27 2016
  • Mathematica
    LinearRecurrence[{1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 5}, 45] (* Vincenzo Librandi, Nov 27 2016 *)
  • PARI
    {a(n) = my(m=n, s=1); if( n<0, m=-6-n; s=-1); s * polcoeff( 1 / (1 - x - x^3 - x^5 + x^6) + x * O(x^m), m)};
    

Formula

G.f.: 1 / (1 - x - x^3 - x^5 + x^6).
0 = a(n) - a(n-1) - a(n-3) - a(n-5) + a(n-6) for all n in Z.
a(n) = - a(-6-n) for all n in Z.

A289980 Oblong (or pronic) numbers of the form x_n.y_n where z_n indicates the digit z repeated n times.

Original entry on oeis.org

12, 20, 30, 42, 56, 72, 90, 1122, 4422, 9900, 111222, 444222, 999000, 11112222, 44442222, 99990000, 1111122222, 4444422222, 9999900000, 111111222222, 444444222222, 999999000000, 11111112222222, 44444442222222, 99999990000000, 1111111122222222
Offset: 1

Views

Author

Bernard Schott, Jul 17 2017

Keywords

Comments

There are only three infinite subsequences, that is, x_n.y_n is pronic for all n, and they occur with (x,y) = (1,2), (4,2), or (9,0). (See Crux Mathematicorum link.)

Examples

			6 * 7 = 42, 66 * 67 = 4422, 666 * 667 = 444222, 6666 * 6667 = 44442222.
		

Crossrefs

Programs

  • Maple
    seq(coeff(series(2*x*(15000*x^14+22000*x^13+21000*x^12-1650*x^11-14420*x^10-17265*x^9-14865*x^8-8553*x^7-4374*x^6+1629*x^5+1082*x^4+645*x^3-15*x^2-10*x-6)/((x-1)*(100*x^3-1)*(10*x^3-1)*(x^2+x+1)),x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 02 2018
  • Mathematica
    Table[Select[Map[FromDigits[Join @@ Map[ConstantArray[#, n] &, #]] &, Drop[Tuples[Range[0, 9], {2}], 10]], IntegerQ@ Sqrt[4 # + 1] &], {n, 7}] // Flatten (* Michael De Vlieger, Jul 17 2017, after Robert G. Wilson v at A002378 *)
    CoefficientList[Series[2 (15000 x^14 + 22000 x^13 + 21000 x^12 - 1650 x^11 - 14420 x^10 - 17265 x^9 - 14865 x^8 - 8553 x^7 - 4374 x^6 + 1629 x^5 + 1082 x^4 + 645 x^3 - 15 x^2 - 10 x - 6) / ((x - 1) (100 x^3 - 1) (10 x^3 - 1) (x^2 + x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 02 2018 *)

Formula

3_n * (3_n + 1) = 1_n.2_n as 33 * 34 = 1122.
6_n * (6_n + 1) = 4_n.2_n as 666 * 667 = 444222
9_n * (9_n + 1) = 9_n.0_n as 9999 * 10000 = 99990000.
G.f.: 2*x*(15000*x^14 + 22000*x^13 + 21000*x^12 - 1650*x^11 - 14420*x^10 - 17265*x^9 - 14865*x^8 - 8553*x^7 - 4374*x^6 + 1629*x^5 + 1082*x^4 + 645*x^3 - 15*x^2 - 10*x -6) / ((x-1) * (100*x^3-1) * (10*x^3-1) * (x^2+x+1)). - Alois P. Heinz, Jul 17 2017
Showing 1-2 of 2 results.