cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A284570 a(n) = A000005((n+1)^2) - A000005(n^2).

Original entry on oeis.org

2, 0, 2, -2, 6, -6, 4, -2, 4, -6, 12, -12, 6, 0, 0, -6, 12, -12, 12, -6, 0, -6, 18, -16, 4, -2, 8, -12, 24, -24, 8, -2, 0, 0, 16, -22, 6, 0, 12, -18, 24, -24, 12, 0, -6, -6, 24, -22, 10, -6, 6, -12, 18, -12, 12, -12, 0, -6, 42, -42, 6, 6, -2, -4, 18, -24, 12, -6, 18, -24, 32, -32, 6, 6, 0, -6, 18, -24, 24, -18, 0, -6, 42, -36, 0, 0, 12, -18, 42, -36, 6, -6
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2017

Keywords

Crossrefs

Cf. A000005, A000290, A048691, A276553 (positions of zeros).

Programs

  • Mathematica
    Table[DivisorSigma[0, (n + 1)^2] - DivisorSigma[0, n^2], {n, 100}] (* Indranil Ghosh, Apr 15 2017 *)
    Differences[DivisorSigma[0,Range[100]^2]] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    A284570(n) = numdiv((n+1)^2)-numdiv(n^2);
    
  • Python
    from sympy import divisor_count as D
    print([D((n + 1)**2) - D(n**2) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017
  • Scheme
    (define (A284570 n) (- (A000005 (A000290 (+ 1 n))) (A000005 (* n n))))
    

Formula

a(n) = A000005((n+1)^2) - A000005(n^2).
a(n) = A048691(n+1) - A048691(n). - Michel Marcus, Apr 15 2017

A284378 a(n) is the least integer m such that A048691 has n equal consecutive values, where A048691(k) is the number of divisors of k^2.

Original entry on oeis.org

1, 2, 14, 3728, 3854, 249293, 748909, 1151514109050
Offset: 1

Views

Author

Michel Marcus, Apr 15 2017

Keywords

Examples

			A048691(2) and A048691(3) are equal (to 3).
A048691(14), A048691(15) and A048691(16) are equal (to 9).
		

Crossrefs

Extensions

a(8) from Giovanni Resta, Apr 15 2017
Showing 1-2 of 2 results.