A276592 Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..276
- Siddharth Dwivedi, Vivek Kumar Singh, and Abhishek Roy, Semiclassical limit of topological Rényi entropy in 3d Chern-Simons theory, arXiv:2007.07033 [hep-th], 2020. See also J. of High Energy Physics (2020) Vol. 2020, Issue 12, Article 132.
Programs
-
Maple
seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
-
Mathematica
a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *) a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *) a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
Comments