cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276607 Column 1 of A276620: a(n) = A276606(n) - A260723(1+n).

Original entry on oeis.org

4, 8, 10, 20, 16, 24, 38, 20, 34, 40, 36, 22, 34, 52, 52, 42, 44, 48, 48, 54, 24, 64, 74, 58, 40, 22, 64, 46, 90, 58, 66, 56, 88, 46, 40, 16, 114, 134, 32, 86, 24, 54, 68, 28, 56, 58, 86, 88, 108, 52, 56, 132, 64, 60, 148, 28, 58, 56, 120, 44, 38, 152, 72, 56, 92, 98, 96, 38, 56, 88, 38, 46, 92, 180, 40, 80, 54, 126
Offset: 1

Views

Author

Antti Karttunen, Sep 13 2016

Keywords

Crossrefs

Column 1 of A276620.
Cf. A276608 (terms divided by 2).

Programs

Formula

a(n) = A276606(n) - A260723(1+n).

A254100 Postludic numbers: Second column of Ludic array A255127.

Original entry on oeis.org

4, 9, 19, 31, 55, 73, 101, 145, 167, 205, 253, 293, 317, 355, 413, 473, 521, 569, 623, 677, 737, 763, 833, 917, 983, 1027, 1051, 1121, 1171, 1273, 1337, 1411, 1471, 1571, 1619, 1663, 1681, 1807, 1957, 1991, 2087, 2113, 2171, 2245, 2275, 2335, 2401, 2497, 2593, 2713, 2771, 2831, 2977, 3047, 3113
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Crossrefs

Column 2 of A255127. (Row 2 of A255129). Positions of 2's in A260739.
Subsequence of A192607, A302036 and A302038.
Cf. A276576, A276606 (first differences).
Cf. also A001248, A219178.

Programs

  • Mathematica
    rows = 100; cols = 2; t = Range[2, 10^4]; r = {1}; n = 1; While[n <= rows, k = First[t]; AppendTo[r, k]; t0 = t; t = Drop[t, {1, -1, k}]; ro[n++] = Complement[t0, t][[1 ;; cols]]]; A = Array[ro, rows]; Table[A[[n, 2]], {n, 1, rows} ] (* Jean-François Alcover, Mar 14 2016, after Ray Chandler *)
  • Scheme
    (define (A254100 n) (A255127bi n 2)) ;; A255127bi given in A255127.

Formula

a(n) = A255407(A001248(n)).

A276610 Square array A(row,col) = A255127(row+1,col) - A255127(row,col): the first differences of each column of Ludic array, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 5, 2, 9, 10, 2, 13, 20, 12, 4, 17, 28, 24, 24, 2, 21, 38, 36, 44, 18, 4, 25, 46, 48, 66, 30, 28, 6, 29, 56, 58, 90, 46, 54, 44, 2, 33, 64, 68, 114, 60, 84, 84, 22, 4, 37, 74, 82, 136, 74, 104, 122, 40, 38, 8, 41, 82, 92, 152, 86, 136, 156, 54, 60, 48, 4, 45, 92, 102, 174, 106, 162, 194, 76, 94, 116, 40, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 13 2016

Keywords

Comments

Not all rows are monotonic. See A276620 for their first differences.

Examples

			The top left 16 x 15 corner of the array:
1,  5,   9,  13,  17,  21,  25,  29,  33,  37,  41,  45,  49,  53,  57,  61
2, 10,  20,  28,  38,  46,  56,  64,  74,  82,  92, 100, 110, 118, 128, 136
2, 12,  24,  36,  48,  58,  68,  82,  92, 102, 114, 126, 138, 148, 158, 172
4, 24,  44,  66,  90, 114, 136, 152, 174, 202, 222, 244, 264, 284, 310, 330
2, 18,  30,  46,  60,  74,  86, 106, 120, 128, 150, 162, 174, 192, 204, 216
4, 28,  54,  84, 104, 136, 162, 180, 210, 238, 260, 288, 318, 346, 366, 396
6, 44,  84, 122, 156, 194, 234, 282, 316, 348, 388, 428, 464, 504, 548, 584
2, 22,  40,  54,  76,  90, 102, 122, 144, 164, 180, 198, 210, 230, 240, 264
4, 38,  60,  94, 120, 150, 190, 210, 240, 270, 302, 330, 364, 390, 430, 456
8, 48, 116, 162, 236, 288, 336, 406, 446, 510, 576, 622, 680, 738, 786, 844
4, 40,  76, 104, 136, 166, 194, 212, 270, 298, 318, 356, 382, 412, 462, 492
2, 24,  38,  52,  62, 108, 124, 148, 150, 182, 198, 222, 242, 260, 272, 300
4, 38,  70, 116, 148, 164, 210, 240, 270, 300, 354, 388, 414, 448, 474, 504
6, 58, 102, 142, 194, 234, 290, 348, 408, 436, 460, 524, 576, 630, 696, 726
8, 60, 134, 204, 256, 322, 390, 446, 498, 578, 642, 684, 774, 828, 870, 948
		

Crossrefs

Transpose: A276609.
Row 1: A016813.
Column 1: A260723 (from the second 1 onward), Column 2: A276606.
Cf. also arrays A257257, A257513 and A276620 (gives the first differences of each row).

Programs

Formula

A(row,col) = A255127(row+1,col) - A255127(row,col).
A(row,col) = A269379(A255127(row,col)) - A255127(row,col).
Showing 1-3 of 3 results.