cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276634 Sum of cubes of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 9, 1, 36, 1, 73, 28, 134, 1, 316, 1, 352, 153, 585, 1, 981, 1, 1198, 371, 1340, 1, 2556, 126, 2206, 757, 3160, 1, 4752, 1, 4681, 1359, 4922, 469, 8605, 1, 6868, 2225, 9710, 1, 12600, 1, 12052, 4257, 12176, 1, 20476, 344, 16759, 4941, 19846, 1, 26496, 1457, 25624, 6887, 24398, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 08 2016

Keywords

Comments

More generally, the Dirichlet generating function for the sum of k-th powers of proper divisors of n is zeta(s-k)*(zeta(s) - 1).

Examples

			a(10) = 1^3 + 2^3 + 5^3 = 134, because 10 has 3 proper divisors {1,2,5}.
a(11) = 1^3 = 1, because 11 has 1 proper divisor {1}.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(3, n) - n^3: n in [1..70]]; // Vincenzo Librandi, Sep 09 2016
  • Mathematica
    Table[DivisorSigma[3, n] - n^3, {n, 70}]
  • PARI
    a(n) = sigma(n, 3) - n^3; \\ Michel Marcus, Sep 08 2016
    

Formula

a(n) = 1 if n is prime.
a(p^k) = (p^(3*k) - 1)/(p^3 - 1) for p prime.
Dirichlet g.f.: zeta(s-3)*(zeta(s) - 1).
a(n) = A001158(n) - A000578(n).
A000035(a(n)) = A053867(n).
Sum_{n=1..k} a(n) ~ k^2*(Pi^4*k^2/90 - (k + 1)^2)/4.
G.f.: -x*(1 + 4*x + x^2)/(1 - x)^4 + Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 17 2017