A276634 Sum of cubes of proper divisors of n.
0, 1, 1, 9, 1, 36, 1, 73, 28, 134, 1, 316, 1, 352, 153, 585, 1, 981, 1, 1198, 371, 1340, 1, 2556, 126, 2206, 757, 3160, 1, 4752, 1, 4681, 1359, 4922, 469, 8605, 1, 6868, 2225, 9710, 1, 12600, 1, 12052, 4257, 12176, 1, 20476, 344, 16759, 4941, 19846, 1, 26496, 1457, 25624, 6887, 24398, 1
Offset: 1
Examples
a(10) = 1^3 + 2^3 + 5^3 = 134, because 10 has 3 proper divisors {1,2,5}. a(11) = 1^3 = 1, because 11 has 1 proper divisor {1}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Proper divisors.
Programs
-
Magma
[DivisorSigma(3, n) - n^3: n in [1..70]]; // Vincenzo Librandi, Sep 09 2016
-
Mathematica
Table[DivisorSigma[3, n] - n^3, {n, 70}]
-
PARI
a(n) = sigma(n, 3) - n^3; \\ Michel Marcus, Sep 08 2016
Formula
a(n) = 1 if n is prime.
a(p^k) = (p^(3*k) - 1)/(p^3 - 1) for p prime.
Dirichlet g.f.: zeta(s-3)*(zeta(s) - 1).
Sum_{n=1..k} a(n) ~ k^2*(Pi^4*k^2/90 - (k + 1)^2)/4.
G.f.: -x*(1 + 4*x + x^2)/(1 - x)^4 + Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 17 2017
Comments