A276650 Primes of the form prime(k)^k - PrimePi(k).
2, 2399, 1801152661459, 73885357344138503765443
Offset: 1
Examples
2 is in the sequence because 2 is prime and 2 = prime(1)^1 - PrimePi(1) = 2^1 - 0. 2399 is in the sequence because 2399 is prime and 2399 = prime(4)^4 - PrimePi(4) = 7^4 - 2. 1801152661459 is in the sequence because 1801152661459 is prime and 1801152661459 = prime(9)^9 - PrimePi(9) = 23^9 - 4. 73885357344138503765443 is in the sequence because 73885357344138503765443 is prime and 73885357344138503765443 = prime(14)^14 - PrimePi(14) = 43^14 - 6.
Links
- Farideh Firoozbakht, Prime Curios: Prime(14)^14 - pi(14) is prime.
Programs
-
Mathematica
Select[Map[Prime[#]^# - PrimePi@ # &, Range@ 1500], PrimeQ] (* Michael De Vlieger, Sep 26 2016 *)
-
SageMath
max_n = 20 seq = [] for n in range(1, max_n+1): p = nth_prime(n)^n - prime_pi(n) if is_prime(p): seq.append(p) print(seq)
Comments